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ABSTRACT In this paper, a continuous-time adaptive actor-critic reinforcement learning (RL) controller
is developed for drift-free uncertain nonlinear systems. Practical examples of such systems are image-
based visual servoing (IBVS) and wheeled mobile robots (WMR), where the system dynamics include
a parametric uncertainty in the control effectiveness matrix with no drift term. The uncertainty in the
input term poses a challenge when developing a continuous-time RL controller using existing methods.
This paper presents an actor-critic/synchronous policy iteration (PI)-based RL controller with a newly
derived constrained concurrent learning (CCL)-based parameter update law for estimating the unknown
parameters of the linearly parametrized control effectiveness matrix. The parameter update law ensures
that the parameters do not converge to zero, avoiding possible loss of stabilization. An infinite-horizon
value function minimization objective is achieved by regulating the current states to the desired with near-
optimal control efforts. The proposed controller guarantees closed-loop stability, and simulation results in
the presence of noise validate the proposed theory using IBVS and WMR examples.

INDEX TERMS Actor-critic policy iteration, drift-free systems, reinforcement learning

I. INTRODUCTION
Drift-free dynamics are commonly found in robotics and
other engineering applications. These are systems of the form
ẋ = g(x)u. Some examples of such systems are image-based
visual servo (IBVS) control, wheeled mobile robot (WMR)
[1], shape servoing control [2], models of kinematic drift
effects in space systems [3] etc. Reinforcement learning (RL)
has successfully provided a means to design optimal adaptive
controllers for various classes of systems [4]–[8]. For the
drift-free systems, when there is a parametric uncertainty in
the control effectiveness term g(·), existing continuous-time
model-based RL solutions cannot be applied to design an RL
policy. In this paper, an adaptive actor-critic (AAC) method
is developed for a class of drift-free nonlinear systems with
uncertainty in the control effectiveness matrix.

RL learns the optimal policy that maximizes a long-term
reward. By interacting with the environment, the decision
maker gets evaluative feedback about its actions, which is
used to improve the control policy [9]. A popular class

of iterative RL methods is adaptive dynamic programming
(ADP), which Werbos introduced for discrete-time (DT)
systems [5], [10], [11], and implemented in actor-critic
(AC) framework. Extension of RL algorithms to continuous-
time systems is achieved in [12] using the Hamilton-Jacobi-
Bellman (HJB) framework with known system dynamics,
where a continuous-time version of the temporal difference
error is employed. Several offline approaches for solving a
generalized HJB equation are developed in [13], [14], using
Galerkin’s spectral approximation [13] and least-squares
successive approximation solution [14] to HJB, which is then
used to compute the optimal control.

When the system dynamics are not completely known,
among online approaches, an integral reinforcement learning
(IRL) method is developed in [15], [16], which requires
only partial knowledge of system dynamics. The approach
called policy iteration (PI) is designed based on AC structure,
where the actor neural network (NN) is learned at a faster
time scale than the critic NN. In [17], the IRL approach
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is extended to simultaneously learn both the actor and
critic NNs, leading to a new method called synchronous PI.
Further, in [18], an actor-critic-identifier (ACI) approach is
presented, which in addition to actor and critic NNs, uses an
identifier network to identify the unknown drift term in the
dynamics. A model-based PI algorithm is developed in [19]
for unknown drift dynamics where concurrent learning (CL)-
based model identification is used to identify the drift part
of the dynamics. In [20], the method in [19] is extended to
systems with control effectiveness faults. In [21], a robust
actor-critic RL policy is developed for a class of nonlinear
systems where certain parameterized unknown parts of the
dynamics are estimated using adaptive update law. The
above-mentioned methods require a complete knowledge of
the input gain or control effectiveness matrix.

The method in [22] identifies the complete nonlinear
system dynamics using the experience replay technique
and learns the actor-critic NN using the PI method for
completely unknown dynamics. A data-driven approach to
the actor-critic algorithm is developed in [23], where the
system dynamics are identified assuming the dynamics can
be written as a combination of linear and NN part, and a
converged g(x) term is recovered from the identifier before
using it in the AC structure. However, in these papers,
no constraint on the parameter estimation of g(x) term
is used which may lead to g(x) estimates converge to 0
leading to loss of stabilization [24]. In [25] an identifier
is used to identify the dynamics in the PI structure, where
the state and control input data at sampled time instances
is used to estimate the identifier and actor, critic weight
parameters which reduces the computational burden of
computing the parameter update laws. The control matrix
g(x) is estimated away from 0 by using a simple switching
rule to a gmin value. A backstepping technique is used
in [26] to design a finite-time stabilizing controller with
unknown dynamics parameterized using NN, which is then
proved to be optimal with respect to a performance criterion.
The identifier design in these papers is decoupled from
the controller stability. However, the problem of loss of
stabilization while estimating parameters of control matrix
g(x) or ẋ 6= 0 at non-equilibrium states is not explicitly
addressed in these designs. In our paper, a new adaptive
parameter update law is designed to estimate control matrix
g(x) using Lyapunov stability analysis in the same spirit as
an indirect adaptive control in the context of actor-critic PI
method while addressing the issue of loss of stabilization.
For model parameter estimation, gradient-based adaptive
update law is a standard approach in adaptive control,
which requires that the regressor be persistently exciting
(PE) for parameter convergence. Concurrent learning (CL) or
its variant integral concurrent learning (ICL) uses historical
data along with relaxed finite excitation conditions. Methods
suggested in [27] use initial excitation condition and filtering
techniques to derive parameter update law. However, when
used for estimating parameters of g(x), these methods may

not prevent the parameter estimates, and control matrix g(x)
from converging to zero or its neighborhood causing loss of
stabilization or ẋ = 0 for non-equilibrium states. Recently,
a metric using Bergman divergence measure is used in [28]
to derive parameter update law, which also suggest using
barrier type function.

Many model-free approaches for continuous-time systems
are developed using Q-learning and its variants where no
knowledge of system dynamics is required to obtain an
optimal policy [29]–[32]. For linear systems, a completely
model-free RL method is developed in [33], which
iteratively solves the algebraic Riccati equation using online
information of state and input. Initialization with a stabilizing
policy is required for this method. Using the IRL framework,
an on-policy model-free Q learning approach is developed
in [34] for linear systems where no stabilizing policy
initialization is required.

The off-policy RL methods have been designed for
the regulation and tracking problems for continuous-time
dynamics with partially or completely unknown nonlinear
system dynamics [35], [36], and for discrete-time linear
systems [37]. The off-policy RL methods require two phases,
first one is that of data collection where a stabilizing
policy collects state, action data. This data is then used
to solve a Bellman equation to obtain an optimal control
using recursive least squares. Although these methods do
not require any knowledge of system dynamics, the data
collection phase must be carried out first which can be time
consuming before the optimal control action is obtained. Off-
policy methods also require a stabilizing behavior policy, the
state-action data depends on the choice of behavior policy.
Whereas for on-policy methods there is no separate data
collection phase required, the policy that is being trained
is also used for exploration. Off-policy methods are data-
driven, and hence, can be data-intensive for finding optimal
control. Whenever some knowledge of the system dynamics
is known, e.g., structure of g(x) matrix for drift-free systems,
it can be used to derive model-based RL controller instead
of purely data-driven approach assuming no knowledge of
the system dynamics. Technical development in this paper
follows along the lines of model-based RL.

Further, the drift-free systems are in some ways
fundamentally different from control-affine systems with
drift and, cannot be stabilized using smooth feedback due
to Brockett’s condition for stabilization of such systems
[38]. Owing to the fact that drift-free systems have no
natural dynamics and are purely driven by inputs, there is
no way for the controller to exploit the natural dynamics for
stabilization, necessitating nonlinear, time-varying, and often
customized control strategies [38].

Contributions
The contribution of this paper is to design an AAC
RL algorithm for a class of uncertain drift-free nonlinear
systems. The parametric uncertainty in the control
effectiveness matrix complicates the design of the PI
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RL algorithm for the drift-free systems. The unknown
parameters of the system dynamics (input gain/control
effectiveness) are modeled as constants for which a
novel constrained concurrent learning (CCL)-based adaptive
parameter update law is developed using Barrier function
used in optimization literature along with update law for
Lagrange multipliers. As long as the parameter estimates
are initialized within a set of required bounds, the newly
designed inverse Barrier parameter update law ensures that
they stay within the bound. The CL method uses a finite
excitation condition that can be verified in real time. The
technical development in [28] shows that the standard
gradient adaptive control parameter update law can also be
derived by taking a gradient of an optimization function. The
adaptive update laws are termed as a velocity gradient update
law in [28], [39], [40]. Following this technical development,
if the parameters are constrained then a standard approach
in optimization is to solve an unconstrained optimization
problem by formulating a Lagrangian function [41]. Thus, to
derive a parameter update law that should satisfy constraints,
a Lagrangian function is formulated. The stability analysis of
the closed-loop system under the constrained adaptive update
law remains to be answered. Lyapunov stability analysis with
the constrained parameter update law is developed inspired
by the stability analysis used for primal-dual saddle point
dynamics [42]–[45]. This is one of the key contributions
of the paper. The critic and actor NNs approximate the
optimal value function and optimal control, respectively.
Similar to the development in [18], [19], the critic NN
weight update law is derived based on the minimization of
the Bellman error computed using optimal and approximate
HJB equation. A least-squares weight update law is derived,
which uses a PE condition of the critic regressor. Similarly, a
gradient-based NN weight update law is derived for actor NN
based on the minimization of Bellman error. The parameter
and actor-critic weights and the system model are learned
simultaneously as new state and control input data becomes
available. Lyapunov stability analysis shows an exponential
convergence of the state and parameter estimation errors to
an ultimate bound, leading to uniformly ultimately bounded
(UUB) stability. Even though the actor-critic structure is
similar to the one presented in [18], [19], the AAC structure
presented in this paper requires a new stability analysis using
which the model parameter update law is designed. This
is another contribution of this paper. The proposed AAC
policy is validated using two simulation examples, IBVS and
WMR. Although the controller is designed in a deterministic
setting, in both simulation studies, the controller regulates
the system state to its desired value in the presence of
system state measurement noise. Compared to our prior work
in [46], where an RL controller is designed for the IBVS
system, this paper derives the RL-policy for a generalized
case of vector model parameter using parameter update
law derived using constrained CL. Additional simulation
example of WMR regulation control is also included.

II. SYSTEM MODEL AND CONTROL OBJECTIVE
A. SYSTEM DYNAMICS
Consider the following system representing the evolution of
the states as a function of the control input. The system
model can be written in the following form

ẋ = g(x, θ)u (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, θ ∈ Rp is an unknown parameter vector. The input
gain matrix g(x, θ) ∈ Rn×m is expressed in parametric form
as vec(g(x, θ)) = Y (x)θ, where Y ∈ Rnm×p is a regressor
matrix, vec : Rn×m → Rnm is a vectorization operator and
vec−1 : Rnm → Rn×m is an inverse vectorization operator.
Using the parametric form of g, and properties of Kronecker
product ⊗, the dynamics in (1) can be written as linear-in-
parameter (LIP) form, given by

ẋ = Yθ (2)

where Y(x, u) = (uT ⊗ In×n)Y (x) ∈ Rn×p.

Remark 1:
Many practical system dynamics can be parametrized in LIP
form. Two examples, namely, WMR and IBVS system, are
provided in the simulation section.

B. CONTROLLER OBJECTIVE
The control objective is to regulate the current state to the
desired state, xd ∈ Rn by minimizing an objective function.
For the control design, the regulation error x̄(t) ∈ Rn is
defined as

x̄(t) , x(t)− xd (3)

and the parameter estimation error θ̃(t) ∈ Rp is defined as

θ̃(t) , θ − θ̂(t). (4)

where θ̂(t) ∈ Rp is the parameter estimate. Since the optimal
regulation objective is to bring the state x(t) to a non-zero
desired state xd, the system model (1) is first written in terms
of x̄(t)

˙̄x = g(x, θ)u = g(x̄, xd, θ)u. (5)

A continuous adaptive actor-critic controller is designed
using the system in (5) with the objective to optimally
regulate the state x̄(t) to 0 with the minimum control effort
u(t). The following assumption is made on the system
dynamics to facilitate the stability analysis.

Assumption 1:
The function g(x, θ) is continuous and bounded 0 <
g(x, θ) < ḡ with a known bound on a set X ⊂ Rn.

III. OPTIMAL CONTROL DESIGN USING ACTOR-CRITIC
STRUCTURE
A. CONTINUOUS RL-BASED CONTROLLER DESIGN
An RL-based controller is designed to achieve the desired
control objective given by the optimal value function
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V ∗(x̄) ∈ R+, defined by

V ∗(x̄(t)) = minu(τ)∈Θ(X )

∫ ∞
t

r(s)ds (6)

where V ∗ is continuously differentiable, satisfies V ∗(0) = 0,
Θ(X ) is a set of admissible policies, r(x̄, u) ∈ R is the local
cost

r(x̄, u) = Q(x̄) + uTRu (7)

where Q(x̄) is a positive definite function and R = RT >
0. Given the dynamics (5) and the value function (6), the
optimal control is given by

u∗ = −1

2
R−1gT (x, θ)V ∗Tx̄ (8)

where V ∗x̄ = ∂V ∗

∂x̄ .

B. HAMILTONIAN AND BELLMAN ERROR
The Hamiltonian of the system is given by

H(x̄, u, Vx̄) = Vx̄g(x, θ)u+ r(x̄, u) (9)

where Vx̄ = ∂V
∂x̄ . The optimal Hamiltonian associated with

the optimal cost and optimal control is given by

H(x̄, u∗, V ∗x̄ ) = V ∗x̄ g(x, θ)u∗ + r(x̄, u∗) = 0. (10)

Computing the value function V (x̄) and the optimal
controller requires the solution to the HJB, which is a
partial differential equation. It is, in general, hard to find
an analytical solution for HJB. The value function is
approximated using an NN called a critic NN, and the
corresponding optimal control is approximated using an actor
NN. Using the approximated cost V̂ ∈ R and controller
û ∈ Rm, the approximated Hamiltonian is computed as

H(x̄, û, V̂x̄) = V̂x̄g(x, θ̂)û+ r(x̄, û) (11)

Using the optimal and approximated Hamiltonian, a temporal
difference or Bellman error δ ∈ R is computed as follows

δ = H(x̄, û, V̂x̄)−H(x̄, u∗, V ∗x̄ ) = V̂x̄g(x, θ̂)û+ r(x̄, û)
(12)

because the value of the optimal Hamiltonian is 0. Bellman
error, δ, in Hamiltonian, is used to learn the critic and actor
NN weights. For implementation of the optimal control,
the value function and optimal control are approximated
using NNs. The following assumptions are made on the NN
function approximators.

Assumption 2:
For a given NN, N(x) = WTσ(V Tx) + ε(x), where x ∈
X ⊂ Rn is a compact set, ε(x) is a function reconstruction
error, the ideal NN weights W and V are bounded by known
positive constants, i.e., ‖W‖F ≤ W̄ , ‖V ‖F ≤ V̄ [47]. The
NN activation function σ and σ′ are bounded.

Assumption 3:
Using the universal approximation property of NN, the
function reconstruction error and its derivative are bounded,
i.e., ‖ε(x)‖ ≤ ε̄ and ‖ε′(x)‖ ≤ ε̄′ [48].

Assumption 4:
The components θi of true parameter vector θ are bounded
as θi < θi < θ̄i, where θ̄i and θi are known.

C. APPROXIMATE OPTIMAL CONTROL
Consider a compact set X ⊂ Rn and the state vector x̄(t) ∈
X . Using NN representation, the optimal value function and
the optimal control are written as

V ∗(x̄(t)) = WT
c φ(x̄) + εc(x̄)

u∗(x̄) = −1

2
R−1gT (x, θ)(φ′(x̄)TWc + ε′c(x̄)T ) (13)

where Wc ∈ Rnc×1, φ(x̄) : Rn → Rnc are the basis
functions, ε(x̄) ∈ R is the function approximation error
and ε′(x̄) ∈ R is its derivative with respect to x̄. Due to
the function approximation error and unknown parameter
in g(x, θ), the value function and optimal control cannot
be implemented in practice. Thus, the approximated value
function and the optimal control laws are designed as

V̂ (x̄(t)) = ŴT
c φ(x̄)

û(x̄) = −1

2
R−1gT (x, θ̂)(φ′(x̄)T Ŵa) (14)

where Ŵc ∈ Rnc×1 and Ŵa ∈ Rna×1 are the estimated
critic and actor weights.

D. PARAMETER UPDATE LAW
To keep the parameter estimates away from zero or
growing too high, which may lead to ẋ = 0 due
to parameter estimation or degrade transient performance
before parameter convergence, the following constrained
functions are defined on each element θ̂i(t) to constrain the
parameters

c1i(θ̂) =
−1

θ̂i(t)− θ̄i
, c2i(θ̂) =

−1

θi − θ̂i(t)
(15)

where θ̄i ∈ R are the upper bounds and θi ∈ R are the lower
bounds. The constraints are denoted as cj = [cj1, ..., cjp] for
j = {1, 2}. A constrained parameter update law is designed
using a novel CCL law with an inverse Barrier constrained
function as

˙̂
θ =PY T (ûT ⊗ ŴT

c φ
′)T + Pkcl

m∑
k=1

YTk ( ˙̂xk − Ykθ̂(t))

−
2∑
j=1

Pdiag(λj)∇θ̂cj ; (16)

λ̇j =[−kjλj + Γ−1
j cj ]

+
λj

(17)

where Yk = (ûTk ⊗ In×n)Yk, P ∈ Rp×p, Γj ∈ Rp×p are
PD diagonal learning rate matrices, λ = [λT1 , λ

T
2 ]T ∈ R2p

are positive Lagrange multipliers such that λj(t0) > 01×p,
kj > 0 and kcl > 0 are constant gains. The gradient ∇θ̂cj
is computed component-wise, i.e., ∇θ̂cj = [

∂cj1

∂θ̂1
, ...,

∂cjp

∂θ̂p
]T .

The operator [a]+b for b ∈ R≥0 is defined as

[a]+b =

{
a, if b > 0

max{0, a}, if b = 0
(18)
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To implement the parameter update law in (16), a history
stack is collected H = {xk, ûk, ˙̂xk}k=m

k=1 with m number
of data points. An estimate of the state derivative ˙̂xk can
be obtained using numerical techniques [19]. By collecting
a history stack, information about the constant parameter θ
can be obtained. CL-based parameter estimation law uses the
finite excitation condition of the system trajectories of (1). In
place of inverse Barrier type constrained function presented
in (15), log-Barrier type constrained functions can also be
used [41].

The design of constrained parameter update law is
inspired by the technical development in [28], where the
connection is made between standard gradient parameter
update law in adaptive control [49] and velocity gradient
algorithms in machine learning [39], [40]. It is shown
that the standard gradient-based adaptive control law can
also be derived as a gradient of an optimization function.
Following along this technical development if the parameter
has constraints then a standard approach in optimization is to
formulate a Lagrangian function and solve the unconstrained
optimization problem. To add constraints on the parameters,
a Lagrangian function (shown in stability analysis section) is
formulated. The gradient of the Lagrangian function yields
the constrained parameter update law shown in (16). The
first term of the parameter update law is a gradient-like
term, the second term is a concurrent learning term and the
third term is used to keep the parameter estimates bounded
where λj are the Lagrange parameters that are updated
according to (17). The Lagrangian parameter acts as a scaling
factor that controls the weight of the constraint function. The
Lagrangian parameters are updated according to the update
law in (17). Naturally, the stability analysis of the closed-
loop system is a question to be answered for the newly
derived constrained parameter update law, which is answered
in the stability analysis section.

Consider the parameter estimation error θ̃(t) = θ − θ̂(t).
Substituting ẋk from (2) in (16), the parameter estimation
error dynamics can be written as

˙̃
θ =− PY T (ûT ⊗ ŴT

c φ
′)T − Pkcl

m∑
k=1

YTi Yiθ̃

+

2∑
j=1

Pdiag(λj)∇θ̂cj (19)

Assumption 5:
For the history stack H = {xk, ûk, ˙̂xk}k=m

k=1 the following
condition is satisfied

λmin(

m∑
k=1

YTk Yk) = σ̄1 > 0, (20)

where σ̄1 ∈ R+. The numerically computed derivatives of
x(t), ˙̂xk computed at kth data point satisfies ‖ ˙̂xk − ẋk‖ ≤ ε
for a small positive number ε ∈ R+.

Remark 2:
Assumption 5 is a finite excitation condition that can be
verified in real-time [50].

Remark 3:
The initial excitation technique proposed in [27] or ICL
proposed in [51] for parameter estimation in adaptive control
can also be used for designing parameter update law.

Remark 4:
The newly proposed constrained parameter update law is
based on primal-dual dynamics that arise in constrained
optimization [44], [45]. It ensures that ẋ 6= 0 for non-
zero control u. The commonly studied adaptive control laws
based on gradient descent and recursive least squares do not
typically ensure that the parameters stay within the specified
bounds [24], [49].

Remark 5:
The parameter estimates should be initialized within
specified parameter bounds given in Assumption 4.

Remark 6:
For θ ∈ R, the parameter update law reduces to

˙̂
θ = PûTY Tφ′T Ŵc + kclP

m∑
k=1

uTk Y
T
rk( ˙̂xk − Yrkukθ̂(t))

where P ∈ R.

E. BELLMAN ERROR
Let the actor-critic NN approximation errors be defined as
W̃c(t) = Wc − Ŵc(t) and W̃a(t) = Wa − Ŵa(t). The
actor and critic NN weights are updated using weight update
laws that minimize the error between the approximated
Hamiltonian and the optimal one, given by Bellman error.
The Bellman error in a measurable form in terms of actor
and critic NN weights is written as

δ = ŴT
c φ
′(x̄)g(x, θ̂)û+ r(x̄, û) (21)

For the analysis, another form of Bellman error based on
(12) is derived as follows

δ = ŴT
c φ
′(x̄)g(x, θ̂)û+ ûTRû

−WT
c φ
′(x̄)g(x, θ)u∗ − u∗TRu∗ − ε′cg(x, θ)u∗ (22)

which by adding and subtracting WT
c φ
′(x̄)g(x, θ̂)û can be

written as

δ = −W̃T
c w −WT

c φ
′g̃ũ− ε′cgu∗ +

1

4
W̃T
a gφW̃a

− 1

2
W̃T
a gφWc +

1

4
ŴT
a g̃φŴa −

1

2
ŴT
a g̃aφŴa

− 1

4
ε′cgrε

′T
c −

1

2
ε′Tc grφ

′TWc (23)

where ũ = u∗ − û, g̃ = g − ĝ, gφ = φ′gR−1gTφ′T ,
gr = g(x, θ)R−1g(x, θ)T , g̃aφ = φ′gR−1g̃Tφ′T , g̃φ =
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φ′g̃R−1g̃Tφ′T , ûTRû−u∗TRu∗ = ũTRũ−2ũTRu∗ is used
and w ∈ Rnc is defined as

w = φ′(x̄)g(x, θ̂)û. (24)

F. CRITIC NN WEIGHT UPDATE LAW
Based on the stability analysis and noticing that W̃c appears
linearly in δ, a recursive least squares update law can be
derived as

˙̂
Wc = proj (−γcΛΩδ) (25)

where Ω = w
1+νwT Λw

∈ R, ν ∈ R and γc ∈ R are
constant gains, proj(·) is a smooth projection operator,
Λ(t) = (

∫ t
0
w(τ)w(τ)T dτ)−1 ∈ Rnc×nc is a symmetric

estimation gain matrix, which is computed using

Λ̇ = −γcΛ
wwT

1 + νwTΛw
Λ, Λ(0) = β2I (26)

where β2 ∈ R+. The covariance Λ(t) is reset at time
instances t+ when Λ ≤ β1I , for β1 ∈ R by selecting
Λ(t+) = Λ(0). The resetting ensures that the covariance
remains positive definite for all time t > 0 [18]. From (26),
since Λ̇ ≤ 0, the covariance can be upper and lower bounded
as β1I ≤ Λ ≤ β2I .

Assumption 6:
The normalized critic regressor ξ = w√

1+νwT Λw
is bounded

and is persistently exciting (PE), i.e.,

µaI ≤
∫ t0+T

t0

ξ(τ)ξT (τ)dτ ≤ µbI, ∀t0 > 0 (27)

where µa, µb, T are positive constants [18].

Consider the error in the critic weights W̃c = Wc − Ŵc.
Taking derivative of W̃c results in

˙̃Wc = −γcΛξξT W̃c + γcΛΩ

(
−WT

c φ
′g̃ũ+

1

4
W̃T
a gφW̃a

− 1

2
W̃T
a gφWc − ε

′

cgu
∗ − 1

4
ε
′

cgrε
′T
c −

1

2
ε
′T
c grφ

′TWc

+
1

4
ŴT
a g̃φŴa −

1

2
ŴT
a g̃aφŴa

)
(28)

Under Assumption 6, a nominal system formed using first
term of (28) is globally exponentially stable [18], [52],
which according to converse Lyapunov Theorem induces a
Lyapunov function Vwc(t, W̃c) with following properties

γ1‖W̃c‖2 ≤ Vwc(t, W̃c) ≤ γ2‖W̃c‖2

∂Vwc
∂t

+
∂Vwc

∂W̃wc

(−γcΛξξT W̃c) ≤ −η1‖W̃c‖2

‖∂Vwc
∂W̃c

‖ ≤ γ̄‖W̃c‖ (29)

where γ1, γ2, η1, γ̄ ∈ R+.

G. ACTOR NN WEIGHT UPDATE LAW
The least-squares gradient-based update law for the actor
NN is derived using the squared Bellman error Ea = δ2.
Computing the gradient of Ea and setting it to zero, results
in the following update law for Ŵa

˙̂
Wa = proj

(
−γaĝφ(Ŵa − Ŵc)δ√

1 + wTw
− γa2(Ŵa − Ŵc)

)
(30)

where ĝφ = φ′g(x, θ̂)R−1gT (x, θ̂)φ′T , γa and γa2 are
constant gains. For the stability analysis presented in next
section, following bounds are defined

‖1

4
ε′cgrε

′T
c +

1

4
WT
c gφWc +

1

2
ε′cgrφ

′TWc

−1

2
ε′cgraφ

′T Ŵa −
1

2
WT
c ĝφŴa + W̃T

c φ
′g̃û‖ ≤ κ1 (31)

‖1

2
WT
c gφ‖ ≤ κ2, (32)

‖1

4
W̃T
a gφW̃a‖ ≤ κ3, w =

∥∥∥ĝφ(Ŵa − Ŵc)
∥∥∥ (33)

‖ −WT
c φ
′g̃ũ− ε′cgu∗ −

1

4
ε′cgrε

′T
c −

1

2
ε
′T
c grφ

′TWc

+
1

4
ŴT
a g̃φŴa −

1

2
ŴT
a g̃aφŴa‖ ≤ κ4 (34)

where gra = gR−1ĝT , κ1, κ2, κ3, κ4, and ω̄ are positive
constants.

IV. STABILITY ANALYSIS
Theorem 1:
Given that the Assumptions 1-6 hold and the following
sufficient condition is satisfied

γa2 − γaκ4w > 0, 1 (35)

the actor-critic controller (14) along with the model
parameter update law in (16) and critic and actor weight
update laws in (25)-(26), (30) guarantee that the signals x̄(t),
θ̃(t), W̃a(t), W̃c(t), λ̃ are uniformly ultimately bounded.

Proof:
Consider domains X ⊂ Rn and Z ⊂ Rp and a positive
definite continuously differentiable Lyapunov function V :
X × Rnc × Rna ×Z × R2p × [0,∞)→ R+

Vz = V ∗(t)+Vwc(t, W̃c)+
1

2
W̃T
a W̃a+

1

2
θ̃TP−1θ̃+

1

2
λ̃TΓλ̃

where V ∗(t) is the optimal value function, Vwc is a Lyapunov
function defined in (29), λ̃ = λ − λ∗ for λ∗ > 0 is the
optimal Lagrange parameter, Γ = blkdiag(Γ1,Γ2) such that
ΓminI ≤ Γ ≤ ΓmaxI . Since the optimal value function
V ∗(t) is continuously differentiable and positive definite,
there exists class-K functions α1(·) and α2(·) such that
α1(‖x̄‖) ≤ V ∗(t) ≤ α2(‖x̄‖), ∀x̄ ∈ Ba ⊂ X . Let
us define z(t) = [x̄(t)T , W̃c(t)

T , W̃a(t)T , θ̃(t), λ̃(t)]T ∈

1Since γa2 and γa are weight update law gains and κ4 and ω are known
constants, the sufficient gain condition in (35) can be easily satisfied.
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X × Z × Rnc+na+2p. Based on the bounds on V ∗(t), the
following bounds can be derived

α3(‖z‖) ≤ Vz(x̄, W̃c, W̃a, θ̃, λ̃, t) ≤ α4(‖z‖) ∀x̄ ∈ Ba
(36)

where α3(·) and α4(·) are class K-functions. Taking the time
derivative of the Lyapunov function and using ˙̃Wa = − ˙̂

Wa

results in

V̇z = V ∗x̄ g(x, θ)û− W̃T
a

˙̂
Wa + V̇wc + θ̃TP−1 ˙̃

θ + λ̃TΓ
˙̃
λ

(37)

Adding and subtracting V ∗x̄ g(x, θ)u∗, utilizing V ∗x̄ g(x, θ) =
−2u∗TR and V ∗x̄ g(x, θ)u∗ = −Q(x̄) − u∗TRu∗, and
substituting u∗ from (13), û from (14), the NN form of the
V ∗ from (13) and (19) results in

V̇z = −Q(x̄) +
1

4
ε′cgrε

′T
c +

1

4
WT
c gφWc +

1

2
ε′cgrφ

′TWc

− 1

2
WT
c φ
′gR−1ĝTφ′T Ŵa −

1

2
ε′cgR

−1ĝTφ′T Ŵa + V̇wc

− W̃T
a

˙̂
Wa − θ̃TY T (ûT ⊗ ŴT

c φ
′)T − kclθ̃

m∑
k=1

YTk Ykθ̃

+ θ̃T
2∑
j=1

diag(λj)∇θ̂cj +

2∑
j=1

λ̃Tj [−k1Γλj + cj ]
+
λj

(38)

Since ĝ term in the first term of second line is not
known, and depends on the parameter estimate θ̂, algebraic
manipulations as shown next can be performed to obtain
a term that is in terms of parameter estimation error θ̃.
This forms the basis of adaptive update law design in the
proposed AAC structure, which is different compared to the
designs that use identifier to identify the dynamics. Adding
and subtracting WT

c φ
′ĝû and ŴT

c φ
′g̃û, and using the fact

that ŴT
c φ
′g̃û = (ûT ⊗ ŴT

c φ
′)Y θ̃, the following expression

is obtained

V̇z = −Q(x̄) +
1

4
ε′cgrε

′T
c +

1

4
WT
c gφWc +

1

2
ε′cgrφ

′TWc

− 1

2
ε′cgraφ

′T Ŵa + W̃T
c φ
′g̃û+ (ûT ⊗ ŴT

c φ
′)Y θ̃

− 1

2
WT
c ĝφŴa + V̇wc − W̃T

a
˙̂
Wa − θ̃TY T (ûT ⊗ ŴT

c φ
′)T

− kclθ̃
m∑
k=1

YTk Ykθ̃ + θ̃T
2∑
j=1

diag(λj)∇θ̂cj

+

2∑
j=1

λ̃Tj (−k1Γλj + cj) +

2∑
j=1

λ̃Tj ([−k1Γλj + cj ]
+
λj

− (−k1Γλj + cj)). (39)

Consider for each j = 1, 2, the term Ti = (λ −
λ∗)i([−k1Γλ+cj ]

+
λ −(−k1Γλ+cj))i ≤ 0 for i ∈ {1, ..., p}.

To show this, consider if λi > 0, then Ti = 0 and if λi = 0,
then (λ−λ∗)i ≤ 0 and ([−k1Γλ+cj ]

+
λ −(−k1Γλ+cj))i ≥ 0

which implies that Ti ≤ 0. The following bound on V̇z can

now be obtained

V̇z ≤ −Q(x̄) +
1

4
ε′cgrε

′T
c +

1

4
WT
c gφWc +

1

2
ε′cgrφ

′TWc

− 1

2
ε′cgraφ

′T Ŵa + W̃T
c φ
′g̃û+ (ûT ⊗ ŴT

c φ
′)Y θ̃

− 1

2
WT
c ĝφŴa + V̇wc − W̃T

a
˙̂
Wa +

[
−θ̃TY T (ûT ⊗ ŴT

c φ
′)T

−kclθ̃
m∑
k=1

YTk Ykθ̃ + θ̃T
2∑
j=1

diag(λj)∇θ̂cj

]

− k1Γλ̃Tλ+

2∑
j=1

λ̃Tj cj (40)

To further develop the stability analysis, consider a
convex-concave Lagrangian function

L(θ̂, λ) = −Q(x) + (ûT ⊗ ŴT
c φ
′)Y θ̃

+
kcl
2
θ̃T

m∑
k=1

YTk Ykθ̃ +

2∑
j=1

λTj cj (41)

Using −∇θ̂L and multiplying by a PD learning rate P yields
the parameter update law in (16), which when substituted in
V̇z yields the terms in [·] in (40). The first term in [·] gets
canceled with the term (ûT ⊗ ŴT

c φ
′)Y θ̃. Next, the third

term in [·] and last term of (40) are shown to be ≤ 0 using
convex-concave properties of Lagrangian function L(θ̂, λ).

Since L is concave in λ, the following inequalities can
be developed using the properties of concave functions
(see, [41], [43], [44]). Consider a function Faj(θ̂, λ) =∑2

j=1 λ
T
j cj such that ∇λL = ∇λFaj

(λj − λ∗j )T cj = (λj − λ∗j )T (∇λj
(Faj))

≤ Faj(θ̂, λ)− Faj(θ̂, λ∗) ≤ 0 (42)

Consider the term θ̃T
∑2

j=1 diag(λj)∇θ̂cj =∑2
j=1

∑p
i=1(θi − θ̂i)λji∇θ̂cji. Using the fact that cji

is a convex function in θ̂(t) and using the properties of a
convex function, the following bound can be established

(θi − θ̂i)λji∇θ̂cji ≤ cji(θ)− cji(θ̂) ≤ 0 (43)

To further simplify the V̇z expression in (40), consider
−W̃T

a
˙̂
Wa after substituting actor weight update law from

(30)

−W̃T
a

˙̂
Wa = C1W̃

T
a

(
ĝφ(Ŵa − Ŵc)

)
δ

− γa2W̃
T
a W̃a + γa2W̃

T
a W̃c (44)

where C1 = γa√
1+wTw

. Substituting (44) and the bounds on

Lyapunov function Vwc from (29) into (40), utilizing bounds
in (42) and (43), adding and subtracting terms 1

2W
T
c gφWc,

V̇z can be written as

V̇z ≤ −Q(x̄)− η1‖W̃c‖2 − γa2‖W̃a‖2 +
1

4
ε′cgrε

′T
c

+
1

4
WT
c gφWc +

1

2
ε′cgrφ

′TWc −
1

2
ε′cgraφ

′T Ŵa

− 1

2
WT
c ĝφŴa + W̃T

c φ
′g̃û+ ζ‖W̃c‖

(
−WT

c φ
′g̃ũ
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+
1

4
W̃T
a gφW̃a −

1

2
W̃T
a gφWc − ε′cgu∗ −

1

4
ε′cgrε

′T
c

− 1

2
ε
′T
c grφ

′TWc +
1

4
ŴT
a g̃φŴa −

1

2
ŴT
a g̃aφŴa

)

− kclθ̃
m∑
k=1

YTk Ykθ̃ + γa2W̃
T
a (Wc − Ŵc)

+ C1W̃
T
a

(
ĝφ(Ŵa − Ŵc)

)
δ − k1λ̃

TΓ(λ̃− λ∗) (45)

where ζ = γ̄β2

νβ1
. Utilizing bounds in (31)-(34), using |C1| ≤

γa, and completing the squares, V̇z can be upper bounded as

V̇z ≤ −Q(x̄)− (1− θ1)η1‖W̃c‖2

− (1− θ1) (γa2 − γaκ3w) ‖W̃a‖2 − σ1‖θ̃‖2

+ κ1 + (C1(κ4 + κ2)w)‖W̃a‖
+ ζ (κ4 + κ3) ‖W̃c‖ − k2Γmin‖λ̃‖2

−
(√

k3Γmin‖λ̃‖ −
k1Γmax‖λ∗‖
2
√
k3Γmin

)2

+
k2

1Γ2
max‖λ‖∗2

4k2Γmin
(46)

where η2 = γa2 − γaκ3w, σ1 = kclλmin(
∑m

k=1 YTk Yk), 1−
θ1 > 0, k1 = k2 + k3. The final bound on V̇z can derived as

V̇z ≤ −Q(x̄)− (1− θ1 − θ2)η1‖W̃c‖2

− (1− θ1 − θ2)η2‖W̃a‖2 − σ1‖θ̃‖2 − k2Γmin‖λ̃‖2 + κ1

+
ζ2(κ4 + κ3)2

4(1− θ1 − θ2)η1
+

(C1(κ4 + κ2)w)2

4(1− θ1 − θ2)η2
+
k2

1Γ2
max‖λ‖∗2

4k2Γmin
(47)

where 1 − θ1 − θ2 > 0. Since Q(x̄) is positive definite,
Lemma 4.3 of [53] can be utilized to derive

α5(‖z‖) ≤ Q+ (1− θ1 − θ2)η1‖W̃c‖2 + σ1‖θ̃‖2

+ (1− θ1 − θ2)η2‖W̃a‖2 + k2Γmin‖λ̃‖2 ≤ α6(‖z‖)
(48)

where α5(·) and α6(·) are class-K functions. Using (48), the
expression (47) can be upper bounded as

V̇z ≤ −α5(‖z‖) + κ1 +
ζ2(κ4 + κ3)2

4(1− θ1 − θ2)η1

+
(C1(κ4 + κ2)w)2

4(1− θ1 − θ2)η2
+
k2

1Γ2
max‖λ‖∗2

4k2Γmin
(49)

which proves that V̇z is always negative whenever z(t) is
outside the compact set

Ω̄ = {z : ‖z‖ ≤ α−1
5 (κ1 +

ζ2(κ4 + κ3)2

4(1− θ1 − θ2)η1

+
(C1(κ4 + κ2)w)2

4(1− θ1 − θ2)η2
+
k2

1Γ2
max‖λ∗‖2

4k2Γmin
)}. (50)

Invoking Theorem 4.18 of [53] ‖z‖ is uniformly ultimately
bounded (UUB).

Remark 7:
The ultimate bound on ‖z‖ can be reduced by appropriately
choosing the gains γa2, γc, and increasing the number

of neurons in the NN, which reduces the function
approximation error of the actor and critic NN.

Remark 8:
When the Assumption 5 is not satisfied, then the term σ1‖θ̃‖2
will not be present in V̇z expression in (47). This is the
time period when the history stack data is collected and N
is not full rank. To yield a UUB stability result, a sigma
modification term is added to the model parameter update
law (16) [24], which yields the parameter update law

˙̂
θ =PY T (ûT ⊗ ŴT

c φ
′)T − σ2θ̂ −

2∑
j=1

Pdiag(λj)∇θ̂cj ;

λ̇j =[−kjλj + Γjcj ]
+
λj

(51)

Remark 9:
Since the finite excitation condition of Assumption 5 can be
verified in real-time, the time of switching between (51) and
(16) can be computed.

Remark 10:
Due to switching of the model parameter update law from
(51) to (16) based on the finite excitation condition, the error
system of z(t) is a switched system. The Lyapunov function
in (36) is a common Lyapunov function for the error system.

Remark 11:
The persistence of excitation condition of Assumption 6
may be ensured by adding an exploration noise of distinct
frequencies in control input signal û. With exploration signal
of small magnitude, the system signals still remain UUB
[18], [22].

Remark 12:
For systems with larger state dimensions, dimensionality
reduction methods such as Koopman operators [54] can be
used to formulate low dimensional system on which the
proposed AAC controller can be used. This can potentially
reduce number of unknown parameters of system model,
actor and critic NNs.

V. SIMULATION STUDIES
Simulations are carried out to test the performance of the
RL-based controller on IBVS and WMR systems.

A. OPTIMAL IBVS CONTROLLER
The dynamics of the IBVS system are given by the system
of the form

ẋ = g(x, θ)u (52)

where u = [v, ω]T is the camera velocity consisting of linear
velocity v(t) ∈ R3 and angular velocity ω(t) ∈ R3. The state
x ∈ R8 represents the normalized projected coordinates for
four points, which can be obtained using image pixels and
the internal camera calibration matrix. The Jacobian matrix

8 VOLUME 00 2025
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FIGURE 1. Regulation error norm of IBVS-RL controller.
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FIGURE 2. Control velocities generated by IBVS-RL controller.
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FIGURE 3. Value function of IBVS-RL controller.
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FIGURE 4. Parameter estimates for the proposed RL controller using
inverse Barrier (IB), concurrent learning (CL) and gradient update law
in [46].
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FIGURE 5. Critic weights of IBVS-RL controller.

gi ∈ R2×6 for a feature point is

gi =

[
θ 0 −x1θ −x1x2 1 + x2

1 −x2

0 θ −x2θ −1− x2
2 x1x2 x1

]
(53)

For four feature points the Jacobian matrix is given by
g = [gT1 gT2 gT3 gT4 ]T ∈ R8×6. The parameter θ is an inverse
depth of the feature point, which is unknown and varies
between (0, 1] with time. In the IBVS implementation, θ
is approximated as a constant parameter which is a common
practice for IBVS [55]. The presence of the unknown
parameter adds uncertainty to the system dynamics. Gaussian
noise with zero mean and variance of 0.05 is added to the
state measurements.

For testing the performance of the proposed
controller, four points were selected on the
image plane with the initial pixel values of
[50 50; 100 50; 100 100; 50 100]T and the desired
pixel values of [825 790; 860 825; 825 860; 790 825]T . The
controller parameters are selected as Q = 800I8×8 and
R = 60blkdiag{100I3×3, 10I3×3}. The basis functions
for approximating the value function V are selected to
be second-order polynomial combinations of elements of

VOLUME 00 2025 9
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FIGURE 6. Actor weights of IBVS-RL controller.

φ = [x̄1, x̄2, ..x̄n]T , the initial weights for the critic NN are
set to Wc(t0) = 3I36×1. The parameters of critic NN are
found by empirical tuning as γc = 20, Λ(t0) = 1, and ν = 5.
The actor NN weights are initialized to Wa(t0) = 3.5I36×1.
The parameters of actor NN are selected as γa = 0.01 and
γa2 = 10.5. The model parameter update law gains are
selected as γθ = 0.005 and kcl = 10000. Learning rates of
P = 0.0001, Γ1 = Γ2 = 0.001 and k1 = k2 = 0.001 are
used for the parameter estimate and Lagrange multiplier
update law. The upper and lower bounds on θ are set to
0.05 and 1, respectively. To ensure the PE condition of
Assumption 6, a probing signal is added to the controller of
magnitude 0.01e−t(sin2(πt5 )cos(πt2 )+sin2( 2πt

3 )cos(0.1t)+
sin2(−1.2e−0.01t)cos(0.5t) + sin5(e−0.1t)).

The results of the simulation are shown in Figs. 1-6.
The norm of the IBVS regulation errors is shown in Fig.
1. The norm of the linear and angular velocities generated
by the proposed controller is shown in Fig. 2. The control
velocities are generated in an optimal manner based on the
minimization of the value function whose value is shown
in Fig. 3. The model parameter weight, which is an inverse
depth, in this case, approximated as a constant parameter,
is shown in Fig. 4. The parameter is time-varying; hence,
the true model parameter is not exactly identified until it is
settled nearly at a constant value close to 4 seconds. The
parameter estimated by the proposed parameter update law
does not go beyond the specified upper and lower bounds,
whereas the CL-based and gradient-based parameter update
laws violate the prescribed parameter bounds, going very
close to 0 between 2-3 seconds, leading to very small values
of linear velocities. Both the bounds eventually converge to
the constant values, the CL-parameter update law converges
to the true parameter eventually. The critic and actor NN
weights are shown in Figs. 5-6, which shows that the weights
remain bounded and converge to constant values. Moreover,
the actor weights converge to the critic weights. For the
IBVS controller, since the parameter is time-varying but
varies between 0 and 1, exact parameter estimation may
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FIGURE 7. Regulation errors of WMR-RL controller in this paper (top
plot) and using gradient update law from [46].
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FIGURE 8. Control velocities generated by WMR-RL controller.

not be achieved before it is settled to its steady state value;
however, the proposed controller drives the regulation error
to a small ball around zero in the presence of uncertainties
in the image Jacobian matrix showing robustness against
variations in parameter estimation.

B. OPTIMAL WHEELED MOBILE ROBOT REGULATION
The kinematics of WMR can be written in the following
form

ẋ = g(x, θ)u (54)

where x = [X,Y, ψ]T ∈ R3 is the 2D position and
orientation state, u = [v, ω]T ∈ R2 are the linear and angular
velocities. The Jacobian matrix g can be written as g =[
acos(ψ) asin(ψ) 0

0 0 b

]T
, which contains uncertain parameters a

and b related to wheel diameter and distance between the
wheels [56]. The proposed RL controller is implemented
for this dynamics by first formulating the Jacobian in a
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FIGURE 9. Value function for WMR-RL controller.
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FIGURE 10. Parameter estimate of WMR-RL controller using inverse
barrier (IB), concurrent learning (CL), and gradient-based parameter
update law used in [46].

parametric form as

vec(g) = Y θ, (55)

where θ = [a, b]T ∈ R2 and Y ∈ R6×2 is

Y =

[
cos(ψ) sin(ψ) 0 0 0 0

0 0 0 0 0 1

]T
. (56)

The control task is to regulate the WMR to a desired
state of xd = [0, 0, π2 ]T from an initial state of x(0) =
[2, 2, π4 ]T . Parameter values of the robot model are selected
as a = 1.5, b = 1. Gaussian noise with zero mean
and variance of 0.01 is added to the state measurements.
The proposed adaptive-actor-critic controller is implemented
using following parameters: Q = 2I3×3, R = 1I2×2.
A polynomial basis functions are selected as φ =
[x̄2

1, x̄
2
2, x̄

2
3, x̄1x̄2, x̄2x̄3, x̄1x̄3]T . The model parameter vector

and actor-critic weights are initialized to θ(0) = [1, 0.5]T ,
Ŵc(0) = 516×1 and Ŵa(0) = 1016×1. The controller gain
parameters are found by empirical tuning as γc = 0.01,
Λ(t0) = 500, ν = 100, γa = 0.01 and γa2 = 20.

0 5 10 15 20

Time (sec)

0

0.5

1

1.5

FIGURE 11. Parameter estimate of WMR-RL controller using inverse
barrier (IB), concurrent learning (CL), and gradient-based parameter
update law in [46].
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FIGURE 12. Critic weights of WMR-RL controller.

The parameters of the adaptive update law are selected as
γθ = 0.01, kcl = 10. The learning rates are selected as
P = 0.001I2×2 and Γ1 = Γ2 = 0.1I2×2 and k1 = k2 = 0.1
for the Lagrange multiplier. There are two sets of Lagrange
multiplier vectors, each corresponding to upper and lower
bounds of θ, which are chosen as 2 and 0.5 for a and 1.5 and
0.2 for b. A probing signal similar to the previous simulation
example is added to the control input.

The results are summarized in Figs. 7-13. From Fig. 7
it is seen that the position and heading angle states are
regulated to the desired position and heading angle using
linear and angular velocities shown in Fig. 8 using the
proposed RL control policy. The bottom subplot of Fig. 7
also shows regulation errors when gradient-based parameter
update law is used by the controller. It is observed that the
position in X-direction converges to a slightly offset value
compared to the controller developed using the parameter
update law proposed in this paper. The control velocities
are bounded and are generated in an optimal manner based
on the minimization of the value function, which converges
to a constant value in the steady state as seen from Fig.
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FIGURE 13. Actor weights of WMR-RL controller.

9. The WMR model parameters are estimated using a
newly proposed CCL-based parameter estimation law with
constraints that achieve the parameter convergence to their
true values, as seen from Figs. 10 and 11. The parameter
estimates stay within prescribed lower and upper bounds for
the proposed model parameter weight update law, whereas
for the CCL-based and gradient parameter update laws, the
estimated model parameters violate the prescribed bounds
as seen from Fig. 10-11. The actor and critic NN weights
remain bounded and converge to constant values, as seen
from Figs. 12 and 13. The actor weights converge to the
critic weights.

C. OPTIMAL CONTROL OF LINEAR DRIFT-FREE SYSTEM
The performance of proposed AAC method is compared with
that of LQR controller using a linear systems example. LQR
provides an optimal solution for linear systems. The system
dynamics is given below

ẋ =

[
1 0
0 1

]
u (57)

The following weight matrices are used to design the cost
for both the controllers

Q =

[
1 0
0 1

]
, R =

[
0.1 0
0 0.1

]
(58)

The initial conditions are selected to be x(t0) = [1 1]T .
For AAC controller the parameters are initialized to θ(t0) =
[1.5 0.2]T , λ1(t0) = λ2(t0) = [5 5]T , Ŵc = 0.513×1, Ŵa =
0.113×1. The gains are selected as γc = 30, Λ(t0) = 5, ν =
20, γa = 20 and γa2 = 2. For the adaptive parameter update
law, the gains are γθ = 0.1 and kcl = 10, P = 0.1I2×2,
Γ1 = Γ2 = 0.1I2×2, k1 = k2 = 0.1. The performance of
our AAC method where the parameters of the B matrix are
estimated using the constrained adaptive parameter update
law and the optimal LQR controller are shown in Figs. 14-
16. It can be seen that our method’s performance is very
close to the optimal performance obtained by the LQR. The

value function is computed as an integral of the local cost
xTQx+ uTRu.

FIGURE 14. LQR state comparison.

FIGURE 15. Control input comparison.

FIGURE 16. Value function comparison.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, a reinforcement learning-based policy is
developed based on a continuous-time version of the PI
architecture for drift-free nonlinear systems with an uncertain
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g matrix. A CCL-based adaptive parameter update law is
designed to estimate the model parameters so that they
are bounded away from zero and an upper bound. Least
squares-based update laws are used for actor and critic NN
weights. The CCL-based parameter update law identifies
the parameter using the LIP property of the dynamics and
history data. Using Lyapunov analysis, it is shown that the
signals of the closed-loop system are uniformly ultimately
bounded. The simulation results on two examples show that
the proposed controller can regulate the state to its desired
value. In the case of WMR, the constant parameter vector is
also identified by the CCL-based adaptive update law.

The controller developed in this paper considers LIP form
of the systems dynamics. When the system dynamics is not
in LIP form, e.g., dynamics represented using a 3-layer NN
parametrization, a similar stability analysis presented in this
paper can be developed to design RL controller for drift-free
systems. This will be studied as a part of future work.
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