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Abstract: An algorithm for learning the dynamics of point-to-point motions from
demonstrations using an autonomous nonlinear dynamical system, named con-
tracting dynamical system primitives (CDSP), is presented. The motion dynamics
are approximated using a Gaussian mixture model (GMM) and its parameters are
learned subject to constraints derived from partial contraction analysis. Systems
learned using the proposed method generate trajectories that accurately reproduce
the demonstrations and are guaranteed to converge to a desired goal location. Ad-
ditionally, the learned models are capable of quickly and appropriately adapting
to unexpected spatial perturbations and changes in goal location during repro-
ductions. The CDSP algorithm is evaluated on shapes from a publicly available
human handwriting dataset and also compared with two state-of-the-art motion
generation algorithms. Furthermore, the CDSP algorithm is also shown to be ca-
pable of learning and reproducing point-to-point motions directly from real-world
demonstrations using a Baxter robot.

Keywords: Dynamical Systems, Learning from Demonstrations, Contraction
Analysis, Gaussian Mixture Mode

1 Introduction

Learning from demonstration (LfD) [1–5] is a paradigm for training robots using demonstrations of a
task.To this end, robots should be given the ability to learn motion plans from demonstrations shown
by the user, e.g., in a human robot collaboration context, a robot must be able to both understand
and learn from a non-expert user through the demonstrations of a task [6–9]. While there are several
ways to represent the motions, we focus on the dynamical systems-based approach in which it is
assumed that the motion of interest is driven by an underlying dynamical system. This paper presents
an algorithm to learn the dynamics of complex point-to-point motions from few demonstrations.

One approach to learn the motions is training a statistical model such as a Gaussian Mixture Model
(GMM) and a neural network (NN) using the available data. However, a simplistic approach of
training these models does not provide any stability or convergence guarantees on the learned model.
hence, the trajectories of the learned model, especially the ones starting from regions of the state
space without demonstrations, may not converge to the goal location of interest. Indeed, convergence
to the correct goal location is crucial in many tasks, such as reaching, object manipulation, pick
and place, pouring, and insertion. In this paper, partial contraction analysis (cf. [10]) is used to
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develop a learning algorithm that both accurately reproduces the demonstrations and guarantees the
convergence of all the trajectories of the learned system to the desired goal location. The primitives
learned using our algorithm are referred to as contracting dynamical system primitives (CDSP). The
dynamical system is represented using a GMM and its parameters are learned from demonstrations
under the derived constraints.

While Lyapunov-based analysis studies the stability of a dynamical system with respect to a particu-
lar equilibrium point, contraction analysis is used to study incremental stability and the convergence
of trajectories with respect to each other [11, 12]. Partial contraction analysis is a generalization of
contraction analysis that studies the convergence to specific properties (e.g. an equilibrium point)
[10]. Thus, a partially contracting dynamical system learned from demonstrations will generate tra-
jectories that (a) accurately reproduce the demonstrations and (b) are guaranteed to converge to a
desired goal location. Additionally, since partial contraction analysis leads to exponential stability,
it is expected that embedding the partial contraction property in the learning framework would lead
to a dynamical system which is robust under perturbations and can quickly adapt to changes in goal
location.

Lyapunov-based LfD approaches that use various parametrization of Lyapunov function such as
quadratic Lyapunov function (V (x) = xTx) [3], weighted sum of asymmetric quadratic functions
(WSAQF) [13], and neurally-imprinted Lyapunov candidate (NILC) [14] are studied in the litera-
ture. Alternatively, the contraction analysis-based LfD approach is recently developed in [15]. In
the contraction analysis, the notion of distance between neighboring trajectories is defined as a vir-
tual displacement δx. In [15], the dynamical system model is approximated by a NN model and
is learned such that the squared length δxT δx between neighboring trajectories is reduced. Thus,
this approach cannot learn complex motions (for e.g. DoubleBendedLine andLeaf 1 from the pub-
licly available LASA handwriting dataset [3]). In contrast, our work uses a generalized notion
of virtual displacement δz = Θ (x) δx which leads to a generalized definition of squared length
δzT δz = δxTM (x) δx, where M (x) = Θ (x)

T
Θ (x) is a contraction metric [11]. The gener-

alized metric allows for learning of complex shapes, such as DoubleBendedLineand Leaf 1 from
LASA handwriting dataset. The metric M (x), which is a positive definite symmetric matrix, is
parametrized using polynomial functions in x of finite degree and its parameters are learned directly
from the demonstrations. However, using a generalized metric leads to state-dependent constraints
in the optimization problem for parameter learning, which must be satisfied at all the points of the
state space of interest. Thus, making the optimization problem intractable. To circumvent this is-
sue, a novel relaxation approach, inspired by sum of squares (SOS) decomposition, is proposed to
eliminate the state dependence from the constraints (see Section 2). To illustrate the benefits of
our approach, detailed experimental evaluations on the LASA handwriting dataset and comparisons
with the two state-of-the-art learning algorithms are provided in Section 3. Furthermore, the CDSP
algorithm’s ability to learn and reproduce point-to-point motions directly from real-world demon-
strations is illustrated on a Baxter robot.

Related Work

LfD is a widely used approach for imitation learning, in which a new task or skill is learned from
demonstrations provided by humans (see[16] for a comprehensive review). One way to accomplish
this is to directly learn the policy or the dynamics involved in the task of interest [2, 3, 17–21]. In
[21], task models are represented using Hidden Markov Models (HMMs) and are combined with a
motion planning approach based on probabilistic road maps (PRMs). In [20], a keyframe-based LfD
approach is proposed that learns tasks by aligning and clustering the keyframes of obtained demon-
strations. In [17], a geometric approach is proposed that adapts available demonstrations to new start
and goal locations via optimization. Inverse optimal control (IOC) or inverse reinforcement learning
(IRL) is another framework used for imitation learning [22–26]. In IOC/IRL approaches, an objec-
tive function underlying a task is learned from the data and is optimized to reproduce trajectories of
robot motion. In [27], a comparison between trajectory-based methods and optimal control methods
is provided. Reinforcement learning-based approaches typically require the system to explore the
state space for learning the policy which can be difficult for human-robot interaction applications.
LfD-based approaches are more practical in such settings. The approach proposed in this paper, falls
under the category of dynamical system-based LfD.

2



Dynamical system-based LfD methods have received a lot of attention in the recent past. One of
the first dynamical system-based frameworks, called the Dynamic Movement Primitives (DMPs)
[1, 2, 28], uses a stable dynamical system containing linear proportional derivative (PD)-like term
coupled with a nonlinear term for encoding a desired trajectory. These two terms are coupled through
a so-called phase variable. Tasks such as drumming [29], pouring [30], and pick and place have
been recreated using DMPs on various robotic platforms. The DMP formulation, however, models
multi-dimensional systems by learning one dynamical system for each dimension separately, thereby
neglecting the combined effect of all the dimensions [3]. The idea of movement primitives is ex-
tended to probabilistic framework in [31]. In [18], task-parametrized GMMs (TpGMM) are used
to design control policies for motion generation through generalization of available demonstration.
However, the algorithm in [18] does not provide any stability guarantees for the learned dynamical
systems. An algorithm to encode motion dynamics using Neurally Imprinted Vector Fields (NiVF)
is presented in [19]. Stability of the learned system is verified using constraints derived through Lya-
punov analysis. The NiVF algorithm restricts the NN learning process to an approach called extreme
learning machines (ELM). While NiVF is shown to be capable of learning a variety of motions, the
stability property is restricted to finite regions of the state space.

An LfD method called Stable Estimator of Dynamical Systems (SEDS) that learns globally sta-
ble dynamical systems directly in higher dimensional state space using Gaussian mixture models
(GMMs) is developed in [3]. To keep the attractor properties of synthesized dynamical system,
Lyapunov stability conditions are used to learn the parameters of GMMs, ensuring asymptotic sta-
bility of the goal location. An important limitation of SEDS is that a quadratic Lyapunov function
(V = xTx) is used in the development of stability constraints. Thus, SEDS can only model trajec-
tories whose 2-norm distances to the target decrease monotonically in time. In [13], an approach
called Control Lyapunov Function-based Dynamic Movements (CLF-DM) is introduced. This ap-
proach parametrizes the energy function using a weighted sum of asymmetric quadratic functions
(WSAQF) and learns the parameters of the WSAQF from demonstrations. The learned energy func-
tion is later used during run time to ensure global stability of the generated trajectories. While it can
encode a wide variety of motions, CLF-DM suffers from the disadvantage of the online correction
signal potentially interfering with the learned dynamical system. More specifically, as pointed out
in [32], CLF-DM has the disadvantage of solving a separate optimization problem for parameter se-
lection of the control Lyapunov function, which can lead to numerical stability issues in parameter
selection. In [32], an algorithm called τ -SEDS is introduced that uses diffeomorphic transforma-
tions along with the SEDS algorithm to generalize the class of motions that can be learned. The
diffeomorphic transformation is used to transform the task space such that the transformed demon-
strations are consistent with a quadratic Lyapunov function and hence SEDS can be used to learn the
dynamics in the transformed space. The learned system is then back-transformed to the original task
space. Our method, on the other hand, is capable of encoding motions that are partially contracting
with respect to any state-dependent positive definite metric M (x), which aids in the accurate learn-
ing of complex shapes such as BendedLine, DoubleBendedLine, Leaf 1, and Leaf 2 from the LASA
dataset [3]. Comparisons on four complex shapes from the LASA handwriting dataset indicate that
the CDSP algorithm, on average, results in higher reproduction accuracy than the CLF-DM [13] and
DMP [2] algorithms (see Section 3). Furthermore, quantitative comparisons indicate that the models
learned using the CDSP algorithm, on average, generate motions that adapt better to sudden changes
of goal location and spatial perturbations.

2 Learning Dynamics from Demonstrations

Consider a state variable x (t) ∈ Rn at time t and let a set of N demonstrations of a point-to-point
motion be solutions to the following autonomous dynamical system

ẋ (t) = f (x (t)) (1)
where f : Rn → Rn is a nonlinear continuously differentiable function. Each demonstration cor-
responds to a point-to-point motion ending at the goal location x∗ ∈ Rn. The nth demonstration
consists of the trajectories of the states {xn(t)}t=Tn

t=0 and the trajectories of the state derivatives
{ẋn (t)}t=Tn

t=0 .

Remark 1 In the case of point-to-point motions, the position trajectories start from various initial
locations and end at the final goal location. Additionally, the velocity and acceleration are zero at
the goal location.
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The nonlinear function f (·) defined in (1) is modeled using a GMM and the resulting autonomous
dynamical system [3, 33] is given by

ẋ (t) =

K∑
k=1

hk (x (t)) (Akx (t) + bk) = f (x (t) , x (t)) (2)

where hk (x) = p(k)p(x|k)∑K
i=1 p(i)p(x|i)

is the scalar weight associated with the kth Gaussian such that

0 ≤ hk (x) ≤ 1 and
∑K
k=1 hk (x) = 1, p (k) = πk is the prior probability, Ak (x) = Σkẋx

(Σkx)
−1,

bk = µkẋ−Akµkx , µk = [µkx , µkẋ ]T and Σk =

(
Σkx Σkxẋ

Σkẋx
Σkẋ

)
are the mean and the covariance of

the kth Gaussian, respectively. Note that in f (·), x (t) is written twice to represent the dependency
of x (t) at multiple places in f (·).Given a set ofN demonstrations, this paper addresses the problem
of learning the function f (·), which is modeled using a GMM, under constraints derived through
partial contraction analysis. Now, consider an auxiliary system, with the state variable y ∈ Rn,

ẏ (t) = f (y (t) , x(t)) =

K∑
k=1

hk (x (t)) (Aky (t) + bk) (3)

Theorem 1 If the constraints in (4) and (5) are satisfied for the auxiliary system in (3),

(Ak)
T
M (y) + Ṁk (y) +M (y)Ak � −γM (y) , k = 1, ..,K, ∀y (4)

Akx
∗ + bk = 0, k = 1, 2, ...,K (5)

where γ is a strictly positive scalar constant,M (y) ∈ Rn×n represents a positive definite symmetric
matrix, and the ijth element of the matrix Ṁk (y) is given by Ṁkij (y) , dMij(y)

dy (Aky + bk),then
the system in (3) is said to be contracting in y, and (2) is said to be partially contracting and all the
trajectories of (2) will converge to the goal location x∗.

Proof: If the constraints in (5) are satisfied, then y = x∗ is the equilibrium point and a particular
solution of the auxiliary system in (3). Based on contraction analysis [11], for the auxiliary system
in (3) to be contracting, the following constraint has to be satisfied

δyT
(∂f
∂y

T

M (y) + Ṁ (y) +M (y)
∂f

∂y

)
δy ≤ −γδyTM (y) δy (6)

where M (y) ∈ Rn×n is a uniformly positive definite symmetric matrix, the ijth element of the
matrix Ṁ (y) is given by Ṁij (y) , dMij(y)

dy f (y) =
dMij(y)
dy

(∑K
k=1 {hk (x) (Aky + bk)}

)
. On

defining the matrix Ṁk (y) whose ijth element is given by Ṁkij (y) , dMij(y)
dy (Aky + bk), the

matrix Ṁ (y) can be decomposed as Ṁ (y) =
∑K
k=1

{
hk (x) Ṁk (y)

}
. The Jacobian ∂f

∂y of the

auxiliary system is given by ∂f
∂y ,

∑K
k=1 {hk (x)Ak}. Thus, the expression on left hand side of (6)

can be rewritten as δyT
(
∂f
∂y

T
M (y)+Ṁ (y)+M (y) ∂f∂y

)
δy = δyT

(∑K
k=1

{
hk (x)ATk

}
M (y)+∑K

k=1{hk (x) Ṁk (y)}+M (y)
∑K
k=1 {hk (x)Ak}

)
δy. Further, on pulling hk (x) out of the sums

and using (4), the following bound can be derived

δyT
(∂f
∂y

T

M (y) + Ṁ (y) +M (y)
∂f

∂y

)
δy ≤ −δyT

(
K∑
k=1

{hk (x) [γM (y)]}

)
δy (7)

Since 0 ≤ hk (x) ≤ 1, ∀k = 1, 2, ...,K and
∑K
k=1 hk (x) = 1, the inequality in (7) can be rewritten

as δyT
(
∂f
∂y

T
M (y) + Ṁ (y) + M (y) ∂f∂y

)
δy ≤ −γδyTM (y) δy and consequently, the auxiliary

system in (3) is said to be contracting with respect to y [11].

According to partial contraction theory [10], if the auxiliary y-system in (3) is contracting and the
trajectories y = x∗ (equilibrium point), and y(t) = x(t), ∀t ≥ 0 are particular solutions of (3), then
the trajectories x (t) of (2) will globally exponentially converge to the goal location x∗. �
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Remark 2 During implementation, the constraints in (4) are evaluated at x since Theorem 1 shows
that the trajectories y (t) and x (t) converge to each other exponentially.

The constrained optimization problem to be solved in order to train the GMM model with the demon-
strations can be written as

{θ∗G, θ∗M} = arg min
θG,θM

1

2T

N∑
n=1

Tn∑
t=0

‖ˆ̇xn (t)− ẋn (t) ‖2 (8)

s.t. (Ak)
T
M (x) + Ṁk (x) +M (x)Ak � −γM (x) , k = 1, ...,K, ∀x (9)

Akx
∗ + bk = 0, k = 1, ...,K, (10)

M (x, θM ) � 0, ∀x (11)

Σk � 0,
∑
k

πk = 1, 0 ≤ πk ≤ 1 k = 1, ...,K, (12)

where θG = {µ1...µK ,Σk...ΣK , π1...πK} is a vector containing the parameters of the GMM model,
θM ∈ Rm is the set of all the unknown constant coefficients in the matrix M (x), T =

∑N
n=1 Tn is

the total number of data points in the demonstrations, and ˆ̇xn (t) = f̂ (xn (t)) is the predicted state
derivative computed based on (2). Note that the parameters of contraction metric are also learned
from the data as opposed to being manually designed. The constraints (9)-(11) ensure the global
attraction of the goal location x∗ and the constraints in (12) are a result of using a GMM.

Note that the constraints in (9) and (11) must be satisfied for all points in the state space, which makes
the optimization problem intractable. To circumvent this issue, a two-fold approach is proposed.
First, the elements of the contraction metric M (x) are assumed to be polynomial functions in x.

Assumption 1 The contraction metric is defined as M (x) , Θ (x)
T

Θ (x), where Θ (x) ∈ Rn×n
and the ijth element of Θ (x) is given by Θij (x) = rij (x) where rij (x) is a polynomial function
in x up to a maximum order dmax.

Second, the constraint in (9) is reformulated such that the state dependency is eliminated, resulting
in a constraint that is a function of the parameters to be learned. On defining the matrices

Gk (θG, θM , x) , (Ak)
T
M (x) + Ṁk (x) +M (x)Ak + γM (x) , k = 1, ...,K, (13)

the constraints in (9) can be rewritten as the scalar constraints yTGk (θG, θM , x) y ≤ 0,∀x, y, k =
1, ..,K, where y ∈ Rn is a vector of indeterminates [34]. Based on Assumption 1, the expression
yTGk (θG, θM , x) y can be further decomposed as

yTGk (θG, θM , x) y = m(x, y)T Ḡk (θG, θM )m(x, y) (14)

wherem (x, y) ∈ Rn̄ is a vector of monomials in the elements of x and y [34] and the elements of the
matrix Ḡk (θG, θM ) can be obtained by coefficient matching. Similarly, the constraintM (x, θM ) �
0, ∀x can be rewritten as the scalar constraint, yTM (x, θM ) y > 0, ∀x, y. Since the elements
of M (x, θM ) are polynomial functions in x, similar to the expression yTGk (θG, θM , x) y, the
expression yTM (x) y can be decomposed as

yTM (x, θM ) y = q(x, y)T M̄ (θM ) q(x, y) (15)

where q (x, y) ∈ Rm̄ is a vector of monomials in the elements of x and y and the elements of the
matrix M̄ (θM ) are polynomials in the elements of θM .

Theorem 2 The autonomous dynamical system in (2) is said to be partially contracting and all
its solutions will converge to the goal location x∗, if M̄ (θM ) � 0, and for k = 1, 2, ...,K,
Ḡk (θG, θM ) � 0, and Akx∗ + bk = 0.

Proof: If Ḡk (θG, θM ) � 0, k = 1, 2, ...,K, it directly follows that

m(x, y)T Ḡk (θG, θM )m(x, y) ≤ 0,∀x, y, k = 1, ..,K (16)

where m (x, y) is a vector of monomials in the elements of x and y. Further, based on (14), the
inequality in (16) implies that yTGk (θG, θM , x) y ≤ 0,∀x, y, k = 1, 2, ...,K and consequently

G (θG, θM , x) � 0,∀x, k = 1, 2, ...,K (17)
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Figure 1: Models of four shapes (BendedLine, DoubleBendedLine, Leaf 1, and Leaf 2), from the
LASA handwriting dataset, learned using the CDSP algorithm. The streamlines of the models are
shown (in gray) along with the demonstrations (in solid red lines) and the reproductions (in broken
blue lines) generated using the learned models.

Similarly, based on (15), if M̄ (θM ) � 0, then M (x) � 0, ∀x. Thus, based on (13) and (17), along
with the fact that Akx∗ + bk = 0, k = 1, 2, ...,K, it can be seen that the constraints in (4) and (5)
are satisfied. Hence, according to Theorem 1, the system in (2) is partially contracting. �

The modified constrained optimization problem is given by

{θ∗G, θ∗M} = arg min
θG,θM

1

2T

N∑
n=1

Tn∑
t=0

‖ˆ̇xn (t)− ẋn (t) ‖2 (18)

s.t. Ḡk (θG, θM ) � 0, k = 1, ...,K, M̄ (θM ) � 0, (19)

Akx
∗ + bk = 0, Σk � 0,

∑
k

πk = 1, 0 ≤ πk ≤ 1 k = 1, ...,K, (20)

3 Experimental Validation

Performance on the LASA Handwriting Dataset: The experiments are conducted using a desktop
computer running Intel i3 processor and 8 Gigabytes of memory. The CDSP algorithm is coded
using MATLAB 2016a and the fmincon function is used to solve the optimization problem. Initial
estimates of the parameters of the GMM are obtained using the Expectation Maximization (E-M)
algorithm. The CDSP algorithm is tested on four shapes (BendedLine, DoubleBendedLine, Leaf 1,
and Leaf 2) from the LASA human handwriting library, introduced in [3], that consists of hand-
writing motions collected from pen input using a Tablet PC. These four shapes represent complex
dynamics where the 2-norm distances to the target do not decrease monotonically. Hence, the use of
a state-dependent contraction metric is crucial for accurately encoding the dynamics. The qualitative
performance of the CDSP algorithm on these shapes is shown in Fig. 1. The CDSP algorithm is
then compared with the DMP [2] and CLF-DM [13] algorithms. The source codes of the CLF-DM
and DMP algorithms were obtained from the respective authors’ websites. The number of basis
functions for the DMP and CLF-DM algorithms for each shape were empirically chosen as follows:
(i) BendedLine: DMP: 25, CLF-DM: 6; (ii) DoubleBendedLine: DMP: 35, CLF-DM: 7; (iii) Leaf 1:
DMP: 25, CLF-DM: 6; (iv) Leaf 2: DMP: 35, CLF-DM: 6. Other design parameters of the DMP
algorithm are chosen according to the guidelines provided in [2]. To carry out a fair comparison, for
each shape, the number of Gaussians of the CDSP algorithm was chosen to be equal to that of the
CLF-DM algorithm. Additionally, the number of asymmetric functions of the CLF-DM algorithm
was chosen based on the guidelines in [13]. Quantitative comparisons are carried out in terms of
the reproduction accuracy as measured by swept error area (SEA) [13] and dynamic time warp-
ing distance (DTWD) between the demonstrations and the reproductions. The average SEA for a
method is given by SEA = 1

Nd

∑Nd

i=1

∑Ti−1
t=0 A(x̂i (t) , x̂i (t+ 1) , xi (t) , xi (t) , xi (t+ 1)) where

x̂i (t) , ∀t = 0, .., Ti is the equidistantly re-sampled reproduction of the ith demonstration with Ti
samples and A (·) denotes the area of enclosed tetrahedron with the points x̂i (t), x̂i (t+ 1), xi (t),
and xi (t+ 1) as corners. Note that DTWD measures the dissimilarity between the shapes of the
demonstrations and the corresponding reproductions without taking time alignment into account. On
the other hand, SEA penalizes both spatial and temporal misalignment between the demonstrations
and the corresponding reproductions. The results of the comparisons are illustrated in Fig. 2.
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Figure 2: The average dynamic time warping distance (DTWD) and swept error area (SEA) between
seven demonstrations and the corresponding reproductions of each algorithm computed for each
shape is shown along with one standard deviation.

Spatial Perturbation
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Target Change
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Figure 3: The average dynamic time warping distance (DTWD) between seven demonstrations and
the corresponding reproductions of each algorithm after spatial perturbations and target changes.
The averages are shown for each shape along with one standard deviation.

To compare the robustness of the algorithms, learned using the three algorithms, to sudden spa-
tial perturbations, a sudden push to the current position is applied during reproductions of the
shapesBendedLine and Leaf 1. These perturbations simulate disturbances to the robot’s end-effector
during reproductions. Similarly, a test was conducted to illustrate and compare the algorithms’
abilities to adapt to sudden changes in goal location. The times, the amplitudes, and the directions
of the pushes and the changes of goal location were chosen to be the same for all the algorithms and
were determined according to the guidelines presented in [35]. It was seen that the reproductions
of the CDSP algorithm consistently converge to the correct goal location after sudden perturbations
and target changes. Exemplar reproductions of the models learned using different algorithms are
shown in Fig. 6. Furthermore, due to the scaling of the acceleration profiles after the perturbations,
some of the reproductions of the DMP algorithm either overshoot the target before convergence,
or seem to have excessive curvature. Indeed, as noted in [2], a more careful choice of coordinate
system would help circumvent the issue of excess curvature during generalization. However, such a
choice has to be hand-crafted for each model. The robustness of the learned models are quantified
by evaluating the DTWD between the reproductions after perturbations or target changes and the re-
spective demonstrations. Since, for evaluating robustness, temporal alignment of the reproductions
and the trajectories is not as important an shape reconstruction, SEA is not evaluated in this experi-
ment. The results of the comparisons are illustrated in Fig. 2. Based on the observed statistics, the
reproductions of the CDSP algorithm, on average, are more robust (in terms of DTWD) to sudden
perturbations and target changes when compared to the CLF-DM and DMP algorithms.

Figure 4: Exemplar trajectories illustrating the robustness of the learned models to sudden spatial
perturbations (plots a and b) and target changes (plots c and d) during reproductions of the shapes
BendedLine and Leaf 1.
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Figure 5: Sequence of images showing the Baxter robot autonomously drawing the Leaf 1 shape
learned from the LASA handwriting dataset.

Figure 6: Baxter robot adapting its motion to sudden spatial perturbations (left) and target changes
(right) during reproductions.

Robot Implementation: In order to demonstrate the utility of our approach in robot motion gen-
eration, the GMM, trained on the demonstrations of the shape “Leaf 1”, is used to generate refer-
ence trajectories for a seven degree-of-freedom Baxter research robot to draw the leaf shape au-
tonomously. To execute the trajectories on the Baxter robot, the in-built low-level controller and the
inverse kinematics engine IKFast are used. A sequence of images showing the Baxter robot drawing
the Leaf 1 shape is shown in Fig. 5. Furthermore, as shown in Fig, 6, the learned model’s ability
to adapt the robot’s motion to sudden spatial perturbations was validated. The perturbations were
chosen according to the guidelines in [35] and were applied using the control software. Finally,
to showcase the CDSP algorithm’s ability to directly learn motions from real-world data, a set of
four demonstrations for a new shape were collected by providing kinesthetic demonstrations to the
Baxter robot. As shown in Fig. 7, the CDSP algorithm was able to successfully learn the motion
dynamics of the new shape while guaranteeing global convergence to the goal location.

4 Conclusion

The CDSP algorithm for learning arbitrary point-to-point motions using dynamical systems is pre-
sented. The experimental evaluations on four shapes of the LASA human handwriting library sug-
gest that the CDSP algorithm is able to successfully learn stable complex point-to-point motions that
are robust to spatial perturbations and can adapt to sudden changes in goal location. Comparisons
against the DMP and CLF-DM algorithms show that the CDSP algorithm resulted in the highest
reproduction accuracy for three of the four shapes, measured by mean swept error area (SEA) and
dynamic time warping distance (DTWD). Furthermore, the CDSP algorithm’s reproductions are
shown to be robust to sudden spatial perturbations and target changes, measured in terms of DTWD.
Finally, the CDSP algorithm’s ability to learn motions directly from real-world demonstrations given
to a robot is validated.

Figure 7: Learning from noisy kinesthetic demonstrations given to the Baxter robot.
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