
Adaptive Trajectory Synchronization with
Time-Delayed Information

Rounak Bhattacharya, Vrithik Raj Guthikonda, Ashwin P. Dani, Senior Member, IEEE

Abstract—In this paper, an adaptive trajectory synchroniza-
tion controller is developed that synchronizes the robot joint
trajectory to the human joint trajectory in the presence of
communication time delay and uncertainty in robot model
parameters including nonlinear-in-parameter friction term. The
controller synchronizes to the human trajectory by account-
ing for time delays that arise in human-robot collaboration
tasks such as, estimating the human trajectory using image
processing, or sensor fusion for trajectory intent estimation, or
computational limitations. The developed adaptive time-delayed
synchronization controller utilizes a new integral concurrent
learning (ICL)-based parameter update law for Neural Network
parameter estimation. Uniformly ultimately bounded stability
of the synchronization and parameter estimation errors are
proved using a Lyapunov-Krasovskii functional analysis. Results
of the Monte Carlo simulations are presented to validate the
performance of the proposed synchronization controller using
a human-robot synchronization example.

I. INTRODUCTION

Collaboration of human and robot agents has gained vast
interest in many applications, specifically in manufacturing
robotics and automation [1]. For a joint task which involves
coordination of the human and robot, achieving trajectory
synchronization can be useful. However, for synchronization
tasks, the human trajectory inference is required [2]. Methods
for trajectory inference, also known as intent inference, based
on image data and fusion with other sensors have been
developed in [3]. Image-processing and communication adds
a time-delay in the trajectory inference [4]. To handle such
delays in trajectory synchronization, this paper develops an
adaptive time-delayed trajectory synchronization controller in
the presence of general uncertain nonlinear robot model.

Various results are available for control design in the
presence of time-delays induced from the state, control
input or from the state being communicated [5]–[11]. Time
delays are present in many engineered systems such as
robot teleoperation [12], systems involving image processing,
synchronization of multi-robot systems, networked systems,
space robotics [13] and newer applications of human-robot
collaboration in cyber-physical human systems. A small
communication or information processing delay can lead to
unstable behavior and reduced performance in networked
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autonomous systems [14]. Synchronization of multiple agents
is a cooperation of behavior between agents such that the
states of agents synchronize with time based information
of each other’s states for non-equal initial conditions [15],
[16]. In [10], [17], [18], a communication-delayed syn-
chronization controllers are developed, where time-delayed
information of neighboring agents is used. The methods in
[17], [18] develops time-delayed synchronization controller
using globally Lipschitz dynamics or dynamics with no drift
term. The synchronization controller in [10] considers a
general nonlinear dynamics but does not develop an adaptive
controller. In our paper, a modified synchronization objective
is used, which synchronizes the robot states to the delayed
human state, where the delay is present due to information
processing. The robot dynamics is a general nonlinear Euler-
Lagrange (EL) dynamics including nonlinear-in-parameters
(NIP) friction term. The objective is aligned with time-
delayed synchronization problem in teleoperation [16], [19].

In teleoperation two robots synchronize based on the state
information communicated over a communication channel
[12], which adds a time delay to the state information
[16], [19]–[25]. Passivity and dissipativity based approaches
are used successfully to design adaptive synchronization
controllers for bilateral teleoperations in [16] for joint space
synchronization with a constant time delay and in [19] for
task space synchronization of heterogeneous robot manipu-
lators with varying time delays using gradient update laws.
The controllers in [16], [19] guarantee asymptotic stability
of the system. Synchronization to human state is achieved
in the bilateral teleoperation context in [22] using passivity
approach. In [23], the performance and stability of three
different configurations of human-in-the-loop telerobotic sys-
tems are studied. It is showed how the stability of a human-in-
the-loop system is affected by a communication architecture
considering independent human reaction and communication
time delays. In [24], haptic feedback is provided to improve
the performance of the human operator in the human-in-the-
loop telerobotic system under the presence of independent
human reaction and telecommunication delay. In [25], sta-
bility limits of a model reference adaptive control (MRAC)
with human-in-the-loop scenario under delay dependent and
independent cases are analyzed. However, these studies focus
on behavior modeling of human reaction delays and its
effects in teleoperation but do not consider the problem of
human-robot state synchronization. Also, the robot dynamics
is linearly parametrizable.



The contribution of this paper is to develop an adaptive
time-delayed trajectory synchronization controller of robot
manipulator represented using EL dynamics with the human
arm trajectory in joint space. The EL dynamics consists
of terms that can be written as linear-in-parameter (LIP)
approximated using a single layer neural network (NN)
and NIP friction approximated using a 3-layer NN. The
synchronization controller uses a delayed state information
of the human agent, a newly designed integral concurrent
learning (ICL)-based adaptive law for updating single layer
NN parameters using finite excitation condition, and gradient
parameter update for three-layer NN. It is assumed that
the time delay is known, constant and bounded. For the
control design using Lyapunov stability analysis, a delay
compensating signal is used in the filtered synchronization
error. A Lyapunov-Krasovskii (LK) functional is designed
such that the delayed terms in the closed-loop dynamics are
nullified. This yields an exponential convergence to a bound
yielding a uniformly ultimately bounded (UUB) stability
of the synchronization and parameter estimation errors, in
contrast to the asymptotic stability results found in literature
[16], [19], [20], which do not consider NIP uncertainty. To
test the performance of the proposed controller for unknown
variations in time delays, Monte Carlo (MC) studies are
conducted with 100 runs by sampling the delay from a
uniform distribution. Root mean squared error (RMSE) and
peak error values are computed along with root mean square
(RMS) values of the required torque. The case of time-
varying delays, similar to [10], [19], will be studied in future.
In rest of the paper, Frobenius norm is used for a matrix
norm, i.e., ∥A∥ = ∥A∥F for A ∈ Rm×m.

II. DYNAMIC MODEL AND SYNCHRONIZATION PROBLEM

A. Joint Space Robot Dynamics
The EL equation of motion for an n-link robot is given by

M(qr)q̈r + C(qr, q̇r)q̇r + f(q̇r) +G(qr) = τr(t) (1)

where qr(t) ∈ Rn represents joint positions, q̇r(t) ∈ Rn

represents joint velocities, q̈r(t) ∈ Rn is joint angular accel-
erations, τr ∈ Rn is the torque, M(qr) ∈ Rn×n represents
a positive definite inertia matrix, C(qr, q̇r) ∈ Rn×n is the
centripetal-Coriolis matrix, f(q̇r) ∈ Rn is a nonlinear friction
term and G(qr) ∈ Rn is gravity term. The robot dynamics
satisfies the following properties which will be subsequently
used in the synchronization control design. Property 1: The
inertia matrix M(qr) is symmetric, positive definite and
satisfies m||yl||2 ≤ yTl M(qr)yl ≤ m̄||yl||2, ∀yl ∈ Rn,
where m, m̄ ∈ R are known positive constants. Property
2: The inertia and centripetal-Coriolis matrices satisfy the
skew-symmetry property η̄T (Ṁ − 2C)η̄ = 0, ∀η̄ ∈ Rn,

Assumption 1. It is assumed that qr(t), q̇r(t) are measur-
able.

Assumption 2. The nonlinear friction terms containing
Stribeck effect is upper bounded as ∥f(q̇r)∥ ≤ 3γ̄

√
n for

γ̄ ∈ R+ [26].

B. Human Arm Agent Model
The human hand motion model is represented by

˙̄qh = fh(q̄h) (2)

where q̄h(t) =
[
qTh q̇Th

]T
, qh(t) ∈ Rn are the joint angles

of the human hand, q̇h(t) ∈ Rn are the joint angular
velocities, fh : R2n → R2n represented by a NN is given
by fh(q̄h) =WT

h σ(V
T
h s) + ϵh(q̄h), where Wh ∈ R(n+1)×2n,

Vh ∈ R(2n+1)×n are ideal weight matrices and s ∈ R2n+1

is the input vector to the NN defined as s = [qTh , q̇
T
h , 1]

T

and σ(.) is the Sigmoid activation function given by σ(s) =
[σ̄(s1), σ̄(s2), ..., σ̄(sn), 1]

T , where s = [s1, s2, ..., s2n+1]
T

and σ̄(si) : R → R, ∀i = [1, ..., 2n + 1] is defined as
σ̄(si) = 1/(1 + exp(−si)), and ϵh(q̄h) ∈ R2n×1 is the NN
function reconstruction error. More details of the NN training
of such models are provided in [27] for estimating Ŵh and
V̂h, which will be used to compute ˙̄qh(t).

Remark 1. The human motion trajectories can be fused with
other cues such as gaze direction to obtain more accurate
trajectories [3]. Computation of q̄h from image processing
may add time delay for computing human states [4].

C. Time-Delayed Synchronization Problem
Given the trajectory estimation of the human joints q̄h(t−

T ) with a known bounded (constant) delay of T > 0
seconds, the robot joint state synchronizes to human state if
lim supt→∞∥qr(t)−qh(t−T )∥ ≤ ε1 and lim supt→∞∥q̇r(t)−
q̇h(t−T )∥ ≤ ε2 for some small ε1, ε2 ∈ R+. Let tT ≜ t−T
and let the position synchronization error between the human
and the robot be defined as

er(t) = qr(t)− qh(tT ) (3)

and an auxiliary error rr(t) ∈ Rn be defined as

rr(t) = ėr(t) + λer(t)− kbez. (4)

where kb, λ > 0 are known constant scalar gains, the signal
ez ∈ Rn is defined as ez ≜

∫ t

tT
rr(l)dl. Multiplying the

time derivative of (4) with M(qr) and using the double time
derivative of (3) for ër(t), using the definition of ez , and
using (1), the open loop error dynamics can be written as

M(qr)ṙr(t) = τr(t)− C(qr, q̇r)q̇r(t)− f(q̇r)−G(qr) (5)
−M(qr)q̈h(tT ) + λM(qr)ėr(t)− kbM(qr)[rr(t)− rr(tT )]

Let f(q̇r) =WT
f σ1(V

T
f q̇br)+ ϵ1(q̇br), where q̇br = [q̇Tr , 1]

T ,
Wf ∈ R(N1+1)×n, Vf ∈ R(n+1)×N1 are NN weights,
σ1 : RN1 → RN1+1 are the basis functions, and ϵ1(q̇br) is
a function reconstruction error. Let M(qr)(q̈h(tT )− λėr) +
C(qr, q̇r)(q̇r(t) − rr(t)) + G(qr) = θTσ2(q̄) + ϵ2(q̄) where
q̄ = [qTr , q̇

T
r , r

T
r , ė

T
r , q̈

T
h (tT ), 1]

T ∈ R5n+1 and σ2 : R5n+1 →
Rp is a set of basis functions, θT ∈ Rn×p are the ideal NN
weights, and ϵ2 ∈ Rn is the NN function reconstruction error.
The open loop error dynamics can then be written as

M(qr)ṙr(t) + C(qr, q̇r)rr(t) = τr(t)− θTσ2(q̄)− ϵ2(q̄)

−WT
f σ1(V

T
f q̇br)−ϵ1(qbr)−kbM(qr)[rr(t)− rr(tT )] (6)



Assumption 3. The Frobenius norms of ideal weights satisfy
the bounds ∥Wf∥2F ≤ W̄f , ∥Vf∥2F ≤ V̄f and ∥θ∥2F ≤ θ̄,
where W̄f , V̄f , θ̄f ∈ R+, and the basis functions satisfy
∥σ2(q̄)∥ ≤ σ̄b for a positive σ̄b.

Assumption 4. Using the universal function approximation
property of the NN, the function reconstruction errors can be
bounded as ∥ϵ1∥ ≤ ϵ̄1, and ∥ϵ2∥ ≤ ϵ̄2.

III. TIME DELAYED SYNCHRONIZATION CONTROL

A. Control and Parameter Update Law

The robot torque control input is designed as

τr(t)=−K1rr(t)−K2er(t)+θ̂
Tσ2(q̄)+Ŵ

T
f σ1(V̂

T
f q̇br) (7)

where θ̂(t),Ŵf (t), V̂f (t) are the NN weight parameter esti-
mates and K1,K2 > 0 are scalar constants.

ICL-based Adaptive Law: For ICL adaptive control [28]
the parameter update law is defined as follows

˙̂
θ=−Λσ2(q̄)r

T
r (t)+kΛ

N∑
i=1

[Yi(Ui−θ̂TYi)
T ]− αs1Λθ̂ (8)

where Λ ∈ Rp×p a positive-definite matrix and k ∈ R+

are adaptation gains, αs1 is a scalar gain, N ∈ Z+. Let
qa = [qTr , q̇

T
r , q̈

T
r , 1]

T ∈ R3n+1, Yi ∈ Rp and Ui ∈ Rn are
defined as

Ui =

∫ t

max(t−∆t,0)

τr(ξ)dξ, Yi =

∫ t

max(t−∆t,0)

σ2(V
T
a qa(ξ))dξ

(9)
Integrating both sides of (1) yields∫ t

t−∆t

τr(ψ)dψ = θT
∫ t

t−∆t

σ2(V
T
a qa(ψ))dψ + Zi (10)

where M(qr)q̈r+C(qr, q̇r)q̇r+G(qr)=θ
Tσ2(V

T
a qa)+ϵ1(qa),

Zi ≜
∫ t

t−∆t
ϵ1(ψ) + f(ψ)dψ, Va ∈ R3n+1×p is a constant

computed according to the batch intrinsic plasticity (BIP)
algorithm of extreme learning machine NN [29]. Using (9),
(10) is written as Ui = θTYi + Zi. Therefore (8) reduces to

˙̂
θ = −Λσ2(q̄)r

T
r (t)

+ kΛ

N∑
i=1

[Yi(θ
TYi + Zi − θ̂TYi)

T ]− αs1Λθ̂ (11)

The NN parameter update laws are designed as

˙̂
Wf = −Γ1σ̂1r

T
r − Γ1σ̂

′
1V̂

T
f q̇brr

T
r − αs2Γ1Ŵf (12)

˙̂
Vf = Γ2q̇br(σ̂

′T
1 Ŵfrr)

T − αs3Γ2V̂f (13)

where Γ1 ∈ R(N1+1)×(N1+1), and Γ2 ∈ R(n+1)×(n+1), σ̂1
is the basis function computed at V̂f and σ̂′

1 : RN1 →
RN1+1×N1 is the Jacobian of the basis functions.

Remark 2. Although regressor σ2(qa) is a function q̈r, Yi

is computed by integrating σ2(qa), which reduces the effects
of noise in computation of q̈r.

B. Closed-loop Error Dynamics

By substituting τr from (7) into (6), the closed-loop
dynamics can be written as

M(qr)ṙr(t) + C(qr, q̇r)rr(t) = −K1rr(t)−K2er(t)

− θTσ2(q̄) + θ̂Tσ2(q̄)− ϵ2 − kbM(qr)[rr(t)− rr(tT )]

− (WT
f σ1(V

T
f q̇br) + ϵ1 − ŴT

f σ1(V̂
T
f q̇br)) (14)

Taylor series expansion of friction NN terms yields

M(qr)ṙr(t) + C(qr, q̇r)rr(t) = −K1rr(t)−K2er(t)

− θ̃Tσ2(q̄)− kbM(qr)[rr(t)− rr(tT )] (15)

− (W̃T
f σ̂1 − W̃T

f σ̂
′
1V̂

T
f q̇br + ŴT

f σ̂
′
1Ṽ

T
f q̇br + ϵf )

where ϵf = −W̃T
f σ̂

′
1V

T
f q̇br−WT

f O(Ṽ T
f q̇br)+ϵ1(q̇br)+ϵ2(q̄)

is such that ∥ϵf∥ ≤ c1 + c2∥rr∥, for positive constants c1
and c2, O(·) are the higher order terms. Let θ̃(t) = θ −
θ̂(t), W̃f (t) = Wf − Ŵf (t) and Ṽf (t) = Vf − V̂f (t) be
the NN and weight matrix estimation errors for θ, Wf and
Vf , respectively. Using (11), the parameter estimation error
dynamics is written as

˙̃
θ = Λσ2r

T
r − kΛ

N∑
i=1

[YiYT
i ]θ̃ − kΛ

N∑
i=1

YiZ
T
i + αs1Λθ̂

(16)

and the NN weight matrix estimation errors are given by

˙̃Wf = Γ1σ̂1r
T
r + Γ1σ̂

′
1V̂

T
f q̇brr

T
r + αs2Γ1Ŵf

˙̃Vf = −Γ2q̇br(σ̂
′T
1 Ŵfrr)

T + αs3Γ2V̂f (17)

Assumption 5. The system is sufficiently excited over a finite
time period Tfe, this implies ∃λm > 0 and ∃Tfe > ∆t :

∀∆t ≥ Tfe, λmin

{∑N
i=1 YT

i Yi

}
≥ λm.

C. Stability Analysis

The stability of the adaptive synchronization controller is
analyzed in two phases. The first theorem is derived when
Assumption 5 is not satisfied and second theorem is derived
when Assumption 5 is satisfied.

Theorem 1. For the system defined in (1), the synchro-
nization controller in (7) and adaptive law in (8)-(13)
ensure bounded synchronization and parameter estimation
errors if Assumptions 1-4 and the gain conditions kb ∈(

αr+c2−K
m− m̄

2
,min

{
4λ
γ2
r
, 2
K2

})
and K > 0 are satisfied, where

γr, λr are constants defined subsequently and λ > 0.

Proof. Let y(t) = [rTr eTr vec(θ̃)T vec(W̃f )
T vec(Ṽf )

T ]T ∈
R3n+np+N1(2n+1) be a vector of closed-loop signals, vec(·)
is vectorization operator. For the stability analysis, LK func-
tional P and Q are defined as

P = ωr

∫ t

tT

∫ t

s

rTr (l)rr(l)dlds, Q = K

∫ t

tT

rTr (l)rr(l)dl.

(18)



where ωr ∈ R+ and K ∈ R+ are constants. Let z(t) =
[yT

√
Q

√
P ]T ∈ D ⊂ R3n+np+2+N1(2n+1) be an auxiliary

vector. A positive definite Lyapunov functional candidate
V (z, t) : D × [0,∞) → R+ is then defined as

V (z, t)=
1

2
(rTr M(qr)rr +K2e

T
r er + tr(θ̃TΛ−1θ̃)

+ tr(W̃T
f Γ−1

1 W̃f ) + tr(Ṽ T
f Γ−1

2 Ṽf )) + P +Q (19)

The bounds on V (z, t) can be derived as
β1∥z∥2 ≤ V (z, t) ≤ β2∥z∥2, where β1 ≜
1
2min

{
2,K2,m, λmin(Λ

−1), λmin(Γ
−1
1 ), λmin(Γ

−1
2 )

}
and

β2 ≜ 1
2max

{
2,K2,m, λmax(Λ

−1), λmax(Γ
−1
1 ), λmax(Γ

−1
2 )

}
.

Taking the time derivative of V (z, t) and substituting (4),
(15), (16) and (17) yields

V̇ (z, t) = rTr (t)(−Cr(qr, q̇r)rr(t)−K1rr(t)−K2er(t)

− θ̃Tσ2 − kbM(qr)[rr(t)− rr(tT )]

− W̃T
f σ̂1 − W̃T

f σ̂
′
1V̂

T
f q̇br + ŴT

f σ̂
′
1Ṽ

T
f q̇br − ϵf )

+K2e
T
r (t)(rr(t)− λer(t) + kbez) +

1

2
rTr (t)Ṁrr(t)

+ tr
(
θ̃T [σ2rr(t)

T − k

N∑
i=1

[YiYT
i ]θ̃ + αs1Λθ̂ − k

N∑
i=1

YiZ
T
i ]
)

+ tr(W̃T
f [σ̂1r

T
r + σ̂′

1V̂
T
f q̇brr

T
r + αs2Ŵf ])

+ tr(Ṽ T
f [−q̇br(σ̂′T

1 Ŵfrr)
T + αs3V̂f ]) + Ṗ + Q̇ (20)

Canceling the terms in trace with the corresponding NN terms
and using Property 3 of the EL system, (20) reduces to

V̇ (z, t) = rTr (t)(−K1rr(t)−K2er(t)− kbM(qr)[rr(t)

− rr(tT )]− ϵf +K2e
T
r (t)(rr(t)− λer(t) + kbez)

+ tr
(
θ̃T (−k

N∑
i=1

[YiYT
i ]θ̃ − k

N∑
i=1

YiZ
T
i + αs1Λθ̂)

)
+ Ṗ + Q̇+ αs2tr(W̃

T
f Ŵf ) + αs3tr(Ṽ

T
f V̂f ) (21)

The time-derivatives of P and Q from (18) using the Leibniz
integral rule for differentiation under the integral are

Ṗ = −ωr

∫ t

tT

rTr (l)rr(l)dl (22)

Q̇ = K(rTr (t)rr(t)− rTr (tT )rr(tT )) (23)

Substituting (22) and (23) in (21), and using K1 = 2K yields

V̇ (z, t) = −
(
KrTr (t)rr(t) +KrTr (tT )rr(tT )

+ kbr
T
r (t)M(qr)rr(t) +K2λe

T
r (t)er(t)

+ tr(kθ̃T
N∑
i=1

YiYT
i θ̃ + kθ̃T

N∑
i=1

YiZ
T
i −αs1θ̃

T θ̂
)

+ ωr

∫ t

tT

rTr (l)rr(l)dl +
(
kbr

T
r (t)M(qr)rr(tT )

+K2kbe
T
r (t)ez

)
− rTr ϵf − αs2∥W̃f∥2 − αs3∥Ṽ ∥2

+ αs2tr(W̃
T
f Wf ) + αs3tr(Ṽ

T
f Vf ) (24)

Substituting θ̂(t) = θ − θ̃(t), and using the fact that∑N
i=1 YT

i Yi is positive semi-definite when Assumption 5 is
not satisfied, V̇ (z, t) can be upper bounded as

V̇ (z, t) ≤ −K∥rr(t)∥2 −K∥rr(tT )∥2 − kbm∥rr(t)∥2

−K2λ∥er(t)∥2 + kbm̄∥rr(t)∥∥rr(tT ))∥+K2kb∥er(t)∥

.∥ez(t))∥+ ∥rr∥∥ϵf∥ − ωr

∫ t

tT

rTr (l)rr(l)dl − αs2∥W̃f∥2

− αs3∥Ṽf∥2 + αs2∥W̃f∥w̄f+αs3∥Ṽf∥v̄f−αs1∥θ̃∥2 + α1∥θ̃∥
(25)

where the bound on terms Yi and the friction f (and therefore
Zi) developed using Assumptions 2 and 3 can be used to
define α1 ≜ (αs1θ̄ + kN∆t2σ̄b[3γ̄

√
n + ϵ̄]). The following

terms in (25) can be upper bounded by using Young’s
inequality as

kbm̄∥rr(t)∥∥rr(tT )∥ ≤ kbm̄

2
∥rr(t)∥2 +

kbm̄

2
∥rr(tT )∥2

K2kb∥er(t)∥∥ez(t)∥ ≤ K2kbγ
2
r

4
∥er(t)∥2 +

K2kb
γ2r

∥ez(t)∥2

(26)

where γr ∈ R+ such that γr >
√

2T
ωr
. Hence, −ωr < − 2T

γ2
r

Utilizing (26), the inequality for ωr, and ∥ez(t)∥2 ≤
T
∫ t

tT
rTr (l)rr(l)dl computed using the Cauchy-Schwarz in-

equality in (25) results in

V̇ (z, t) ≤ −
(
K + kbm− kbm̄

2

)
∥rr(t)∥2

−
(
K − kbm̄

2

)
∥rr(tT )∥2 −K2

(
λ− kbγ

2
r

4

)
∥er(t)∥2

− (2−K2kb)

γ2r
T

∫ t

tT

rTr (l)rr(l)dl + ∥rr∥c1 + c2∥rr∥2

− αs1∥θ̃∥2 − αs2∥W̃f∥2 − αs3∥Ṽf∥2

+ αs2∥W̃f∥w̄f + αs3∥Ṽf∥v̄f + α1∥θ̃∥ (27)

Let α2, α3, α4, αr ∈ R+. Completing the squares on terms
∥W̃f∥2, ∥Ṽf∥2, ∥θ̃∥2, ∥r∥2, and using αi with further sim-
plification yields

V̇ (z, t) ≤ −
(
K + kbm− kbm̄

2
− αr − c2

)
∥rr(t)∥2

−
(
K − kbm̄

2

)
∥rr(tT )∥2 −K2

(
λ− kbγ

2
r

4

)
∥er(t)∥2

− (2−K2kb)

γ2r
T

∫ t

tT

rTr (l)rr(l)dl − (1− α2)αs2∥W̃f∥2

− (1− α3)αs3∥Ṽf∥2 − (1− α4)αs1∥θ̃∥2 + c3 (28)

where c3 = 1
4αr

c21 +
αs2

4α2
w̄2 + αs3

4α3
v̄2 +

α2
1

4α4αs1
, 1− α2 > 0,

1 − α3 > 0, and 1 − α4 > 0. Splitting the integral term of
(28) and utilizing the following inequality

− 1

γ2r

∫ t

tT

∫ t

s

rTr (l)rr(l)dlds ≥ − T

γ2r

∫ t

tT

rTr (l)rr(l)dl (29)



and using (18) yields the following result

V̇ (z, t) ≤ −
(
K + kbm− kbm̄

2
− αr − c2

)
∥rr(t)∥2

−K2

(
λ− kbγ

2
r

4

)
∥er(t)∥2 −

(2−K2kb)

2Kγ2r
TQ

− (2−K2kb)

2γ2rωr
P − (1− α2)αs2∥W̃f∥2

− (1− α3)αs3∥Ṽf∥2 − (1− α1)αs1∥θ̃∥2 + c3. (30)

Writing (30) as V̇ (z, t) ≤ −η̄V (z, t) + c3, where η1 =

min
(
K + kbm − kbm̄

2 − αr − c2, K2(λ − kbγ
2
r

4 ), (1 −

α4)αs1,
(2−K2kb)

2Kγ2
r

T, (2−K2kb)
2γ2

rωr

)
. Using the bounds on V (z, t)

and solving the linear differential inequality in V (z, t), the
bound on the system states is computed to be ∥z(Tfe)∥ ≤√

β2

β1
∥z(0)∥e−

η̄Tfe
2 +

√
c3
η̄β1

, t ∈ [0, Tfe), where η̄ = η1

β2
.

Theorem 2. For the system defined in (1), if Assumptions
1-5 and gain conditions in Theorem 1 are satisfied then
the synchronization controller in (7) and adaptive laws in
(8)-(13) ensure uniformly ultimately bounded stability of all
signals of the closed-loop system in (15)-(17). The robot
state synchronizes to the delayed human state q̄h(tT ) with
an ultimate bound

∥z(t)∥ ≤

√
β2
β1

∥z(0)∥e−
η
2 (t−Tfe) +

√
c3
ηβ1

, t ∈ [Tfe,∞)

(31)
where η ≜ η2

β2
, where η1 ∈ R+ is subsequently defined.

Proof. Utilizing the Lyapunov analysis presented in Theorem
1 until (24), from the finite excitation condition of Assump-
tion 5,

∑N
i=1 YT

i Yi is positive definite. So V̇ (z, t) can be
upper bounded as

V̇ (z, t) ≤ −K∥rr(t)∥2 −K∥rr(tT )∥2 − kbm∥rr(t)∥2

−K2λ∥er(t)∥2 + kbm̄∥rr(t)∥∥rr(tT )∥ − kλm∥θ̃(t)∥2

+K2kb∥er(t)∥∥ez∥ − ωr

∫ t

tT

rTr (l)rr(l)dl + ∥rr∥∥ϵf∥

− α2s∥W̃f∥2 − α3s∥Ṽf∥2 + α2s∥W̃f∥w̄f + α3s∥Ṽf∥v̄f
− αs1∥θ̃∥2 + α1∥θ̃∥ (32)

Utilizing development similar to Theorem 1 from (26) to (28)
with −kλm∥θ̃(t)∥2 term and using (18) the bound on V̇ (z, t)
can be written as

V̇ (z, t) ≤ −
(
K + kbm− kbm̄

2
− αr − c2

)
∥rr(t)∥2

−K2

(
λ− kbγ

2
r

4

)
∥er(t)∥2 − (kλm + (1− α4)αs1)∥θ̃∥2

− (2−K2kb)

2Kγ2r
TQ− (2−K2kb)

2γ2rωr
P

− (1− α2)αs2∥W̃f∥2 − (1− α3)αs3∥Ṽf∥2 + c3 (33)

Thus, (33) can be written as

V̇ (z, t) ≤ −η2∥z∥2 + c3, ∀t ∈ [Tfe,∞) (34)

where η2 is same as η1 except the third term inside the min
operator is kλm+(1−α4)αs1. Using the bounds on V (z, t),
(34) can be written as V̇ (z, t) ≤ −ηV (z, t) + c3, ∀t ∈
[Tfe,∞). The bound in (31) is obtained by solving the linear
differential inequality similar to the proof of Theorem 1.
Using standard signal chasing argument, all the closed loop
signals and torque input are bounded.

Remark 3. A data selection algorithm to collect
{qr(t), q̇r(t), q̈r(t), τr(t)}t=ti

t=ti−∆t,∀i = [1, ..., N ] is used
such that the minimum singular value in Assumption 5 is
maximized, [30], λmin is proportional to η of Theorem 2.

Remark 4. The replacement or addition of data points from
history stack does not affect LK functional, thus (19) can be
used as a common LK functional similar to [30].

IV. SIMULATION STUDIES

The adaptive time-delayed synchronization controller is
tested in simulation using a 2DoF robot which synchronizes
its joint angle trajectories and velocities with the 2DoF
model of human joint states. Since the human motion is not
externally controlled, it is in effect one-way synchronization,
where the robot synchronizes its motion with human states.
In simulation, the human joint trajectories are generated
from a predefined motion intent model presented in Section
II-B. The developed adaptive synchronization controller is
coded in Matlab R2022b. The robot is simulated with fol-
lowing parameters: masses and the lengths of each link are
m1 = 0.85kg, m2 = 2.3kg, l1 = 1.1m, l2 = 0.9m. The
acceleration due to gravity g = 9.81m/sec2. The sampling
time is chosen to be 0.01sec and the total simulation time
is 100sec. To study the performance of the controller to the
variations in time delay, the delay is sampled from a uniform
distribution with mean delay of T = 0.45sec sampled from
[0.4−0.5]sec interval. Monte Carlo runs of the simulation are
performed by running the simulation 100 times. The steady
state RMSE and the RMS values for the robot torque are
calculated for each of the 100 runs. The human trajectory,
for its motion in a horizontal plane for moving an object
horizontally, is obtained from the model and is described as
q̄h(t) = [2 sin(πt50 ), sin(

πt
50 ),

2π
50 cos(πt50 ),

π
50 cos(

πt
50 )]

T .
To incorporate time-delayed adaptive synchronization with

ICL parameter update law, the following control gains are
selected: λ = 5I2, kb = 0.1, k = 0.05I11, K1 = 38
and K2 = 80, where In is an identity matrix of size n.
Parameters of the ICL term are selected as N = 20 and
∆t = 1.5× 10−1 sec, where N is selected using N ≥ ⌈n.p

n ⌉,
⌈·⌉ denotes the ceiling function, which yields N ≥ 11. The
robot state is initialized to [qTr (0), q̇

T
r (0)]

T = [1 0 1 0]
T . The

NN parameter estimates θ̂(0), V̂ (0) and Ŵ (0) are initialized
using a normal distribution. The basis functions are selected
to be Sigmoid function. The parameter update law gains are
selected to be Γ1 = 8I9, Γ2 = 3I3, Λ = 0.25I11, αs1 = 0.16,
αs2 = 0.09, αs3 = 0.001. In Fig. 1(a), synchronization errors
for joint angles and joint angular velocities of the 2-DOF
robot are shown and the norm of the parameter estimates
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Figure 1. Results of simulation: (a) position and velocity synchronization
errors between human and the robot, (b) parameter estimate norms.

are shown in Fig. 1(b). From Fig. 1(a), it is observed that
the maximum peak error (out of two errors) in the steady
state is of the order of 0.14 rad. The mean and the standard
deviations of the steady state RMSE computed over all the
MC runs are 0.1342rad and 0.00194rad, respectively. RMS
of τ computed over the MC runs is 26.378N-m.

V. CONCLUSION AND FUTURE WORK

An adaptive time-delayed trajectory synchronization con-
troller is developed in joint space for synchronizing robot and
human motion. Considering the time delays in human state
estimation in the synchronizing control for EL dynamics, the
Lyapunov stability analysis using LK functional guarantees
UUB stability of synchronization and parameter estimation
errors. MC simulation studies show that the developed con-
troller synchronizes to the human state with a small bound
as seen from RMSE. Time varying time delay case will be
studied as future work and the performance of the developed
controller will be tested using a robot platform.
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